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Abstract. We propose to develop a new cryptocurrency Blockchain platform

called Abelian (ABEL). It will employ post-quantum cryptographic primitives for

ensuring the security against quantum attacks. The platform will also support

three different levels of privacy, which we believe will be useful for different usage

scenarios, spanning from the conventional use as of most existing cryptocurrencies

are supporting to some highly private usage scenarios that a few current cryp-

tocurrencies are promoting. We also propose a new privacy level, namely Full

Privacy with Accountability, which will accommodate regulatory needs and en-

terprise requirements. Users can choose which privacy levels they would like to

have for each transaction to be carried out. We would like to provide the cryp-

tocurrency community a new choice and a new platform with a set of tools, which

will empower other innovators to build their next disruptive technologies, applica-

tions, and businesses using the quantum-resistant infrastructure supported by the

Abelian platform.

In this whitepaper, we propose a construction approach and a suite of quantum-
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resistant cryptographic techniques for building the Abelian Blockchain platform.

We formalize it by proposing definitions and security models with the aim of

building a quantum-resistant cryptocurrency platform from provably secure cryp-

tographic schemes.

Our mission is to open up a new page on the evolution of cryptocurrency

through enabling the first quantum-resistant cryptocurrency with the options of

supporting fully private transactions and accountability. We strongly believe that

the success of this project will not only bring to the crypto community a quantum-

resistant cryptocurrency with full privacy and accountability, but also the key

quantum-resistant cryptographic techniques which will benefit other existing cryp-

tocurrencies including Bitcoin.

Let us all work together, and let us invest today for tomorrow’s sustainable

and prosperous quantum-resistant cryptocurrency ecosystem with the options of

full privacy and accountability.

“When cryptography is outlawed, bayl bhgynjf jvyy unir cevinpl.” – John Perry

Barlow
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1 Introduction

Bitcoin is a cryptocurrency which literally has changed the world. In one’s lifetime,

it is not often to experience something like this, a global phenomenon that is both

so disruptive and so intriguing. It gives us huge and profound impact on how

we transact in the financial world. In less than 15 years, Bitcoin, and the term

“cryptocurrency” have evolved from being known by just a few technical geeks

deep inside the cyber-world to literally a household name.

Bitcoin is not the first attempt to create a global, decentralized, and secure

cryptocurrency. But its underpinning technology conglomerate, called Blockchain,

is giving the financial world an innovative and disruptive impact. Blockchain is a

genius creation by putting together some well-known primitives, and it is so unique

and groundbreaking in both technological contributions as well as application in-

novativeness.

Blockchain is a magnificent inter-disciplinary technological work, which nicely

intertwines some well-studied computer science algorithms and cryptographic tech-

niques to create an ingenious cryptocurrency, which has changed the rules of the

global financial market. It is also demonstrating the power of reshaping the eco-

nomic dominance in the world. The impact and potential of cryptocurrencies are

profound, long-lasting and fundamental.

Blockchain is based on the concept of distributed and duplicated ledgers among

a tremendously broad collection of intelligent rational “node-runners”, which are

contending yet cooperating. Blockchain applies a consensus algorithm over a peer-

to-peer computer network together with digital signatures under individual crypto-

wallet owners’ private keys for ensuring some crucial functionalities of a virtual

ledger without a centralized moderator. Those crucial functionalities include dou-

ble spending prevention, time-stamping, and immutability.

Elliptic Curve Cryptography (ECC) is in the core of almost all the current

cryptocurrencies for digital signatures, which ensure the ownership of the crypto-
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coins, non-repudiation, and transaction integrity. ECC is an invention in the 80s

of the last century and the security of ECC relies on the difficulty of computing

the discrete logarithm problem over an underlying elliptic curve finite field, or a

related Decisional or Computational Diffie-Hellman problem. These mathematical

problems are believed to be intractable for our conventional computers while may

no longer be the case in front of quantum computers which behave according to

laws in quantum mechanics.

When ECC’s underlying mathematical problems are no longer considered in-

tractable, for example, against quantum attacks, namely, solving the underlying

mathematical problems using quantum computers with some quantum algorithms,

the ECC-based digital signatures may become forgeable. The cryptocurrency’s

fundamental principle, according to Nakamoto’s Bitcoin paper, quote “transac-

tions that are computationally impractical to reverse,” will collapse, so is the se-

curity of the cryptocurrency itself.

The theme of this project is to build a quantum-resistant cryptocurrency with

the options of supporting privacy and accountability for individual crypto-coin

transactions. By privacy, we mean the protection of the sender and receiver’s

identities or wallet addresses of a crypto-coin transaction. We also want to protect

the transaction amount from prying eyes. By accountability, we consider some

practical scenarios that an authority may be able to open up the identities and

the transaction amount while the transaction will remain anonymous to all other

participants.

In addition to designing, prototyping, developing and deploying a full-fledged

quantum-resistant cryptocurrency called Abelian (ABEL), we are also hoping to

build up an ecosystem for ABEL. An ABEL community will be built up with

developers all over the world to build a more secure and private ABEL ecosystem.

Side chains, smart contracts, and inter-operability will be developed for supporting

various DeFi, Metaverse, web3 applications and initiatives.

The design idea of Abelian is inspired by CryptoNote, a linkable ring signature

7



based system. Besides making Abelian a cryptocurrency which is secure against

quantum attacks, we aim to support a higher level of privacy protection to all users,

also against quantum attacks. Furthermore, we also consider accountability. Ac-

countability refers to the ability to accommodate an authority’s needs to open up

the privacy protection of the transactions for being able to trace and link the flow

of coins over wallet addresses, and also the transaction amount. Accountability

is particularly useful when ABEL is used by some organization or consortium as

their internal-use-only tokens while the authority of the organization or consor-

tium should have the rights to identify and audit the transactions. Accountability

will also be useful for regulatory bodies to perform monitoring duties on the cryp-

tocurrency market.

In this project, we will make all the design documents and codes open source,

that will encourage the rapid growth of the Abelian community. This will also

help encourage collaboration with other technology partners for this new cryp-

tocurrency. Our mission is to open up a new page on the evolution of cryp-

tocurrency through enabling the first quantum-resistant cryptocurrency with the

options of supporting fully private transactions and accountability. We strongly

believe that the success of this project will not only bring to the crypto community

a quantum-resistant cryptocurrency, but also the key quantum-resistant crypto-

graphic techniques which will benefit all the existing cryptocurrencies including

Bitcoin.

Through further development and collaboration with partners, we hope to bring

smart contracts, side-chains, special higher-layer protocols, and interoperability

techniques to the Abelian ecosystem in the near future. We would like to give the

crypto market a new choice and a new platform, which empowers other innova-

tors to build their next disruptive technologies, applications and businesses using

quantum-resistant cryptographic techniques brought in by the Abelian community.
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1.1 When ECC Becomes Forgeable

Elliptic-Curve Cryptography (ECC) is a class of public key cryptography based

on the algebraic structure on elliptic curves over finite fields. It can be used to

construct different kinds of cryptographic primitives such as key agreement, digital

signature, encryption, zero-knowledge proof, and so on. All the major cryptocur-

rencies nowadays are based on ECC. In Bitcoin, for example, a wallet address is

generated from an ECC public key after going through a series of cryptographic

hash operations using SHA256 and RIPEMD-160, and also some error detection

encoding.

An ECC public key is typically generated from a random number as the cor-

responding private key by calculating a scalar multiplication over an elliptic curve

defined under a finite field. Simply speaking, the difficulty of compromising the

ECC private key given the public key depends of the intractability of the under-

lying discrete logarithm problem in an additive group on an elliptic curve over

a finite field, and this hard problem is usually referred to as the Elliptic Curve

Discrete Logarithm Problem (ECDLP).

While ECC with carefully chosen parameters and curves is currently considered

secure, it may no longer be true in the future when significant advancements

have been made in the technology of quantum computing. In August 2015, the

U.S. National Security Agency (NSA) released a major policy statement on the

need for Post-Quantum Cryptography (PQC). The NSA had long cuddled up

to ECC, swaying standards bodies away from RSA public key cryptosystem and

toward ECC in the late 1990s, as well as recommending it as a strong enough

solution for sensitive government agencies to use in guarding their secrets. The

announcement made in August 2015 by NSA, however, showed a hard stop on

recommending Suite-B, a 20-year-old public cryptographic standard that relies

on ECC and was certified for top secret data protection, to sensitive government

organizations. The agency suggested concerns over the advancement of quantum

computing as the reason on stopping their support of Suite-B. This announcement
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is a great stimulus to the development, standardization, and commercialization

of new quantum-resistant / quantum-safe cryptographic algorithms, and PQC in

general. It also symbolizes NSA’s moving away from ECC.

Quantum computers exploit the properties of quantum superposition to gen-

erate Qubits, which can be used to effectively attack ECC, namely the underlying

hard problem ECDLP. Unlike normal bits which can have a state of either 0 or 1,

Qubits can exhibit both states 0 and 1 at the same time, and when combined with

special algorithms such as Shor’s Algorithm [79], can solve mathematical prob-

lems that would take traditional computers thousands of years to compute such

as Integer Factorization or the Discrete Logarithm Problem in certain groups.

While most number-theoretic cryptography, including ECC, relies on the conjec-

tured hardness of these mathematical problems, quantum computers would ren-

der number-theoretic cryptosystems insecure in the near future where large-scale

quantum computers may become available.

It is also worth noticing that large-scale quantum computers seem to be get-

ting closer, for example, in November 2017, IBM announced a 50-qubit quantum

computer, and in March 2018, Google announced a 72-qubit one. Following the

reminiscent of Moore’s Law as it is currently, quantum computers are expected

to produce hundreds or thousands of Qubits in coming years, where ECC may be

effectively compromised once millions of Qubits can be reached.

On December 20, 2016, the National Institute of Standards and Technology

(NIST) made a Call for Proposal Announcement and initiated a process to solicit,

evaluate, and standardize PQC [66]. According to NIST, the purpose of the pro-

cess is to introduce “new public-key cryptography standards which will specify one

or more additional unclassified, publicly disclosed digital signature, public-key en-

cryption, and key-establishment algorithms that are available worldwide, and are

capable of protecting sensitive government information well into the foreseeable

future, including after the advent of quantum computers.”

The goal of PQC is to develop cryptosystems that are secure against both
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quantum and classical computers. Back to just a few years ago, the NIST already

had received around 80 proposals of post-quantum cryptographic algorithms as

candidates for the consideration of being a public standard. There are algorithms

for digital signatures, public-key encryption, and key establishment. Activities on

post-quantum cryptography research and development have been going actively

and we are not lacking of elegantly designed, strong and efficient algorithms to

start with for building a quantum-resistant cryptocurrency. As well articulated by

NIST:

“While in the past it was less clear that large quantum computers are a

physical possibility, many scientists now believe it to be merely a signif-

icant engineering challenge. Some engineers even predict that within

the next twenty or so years sufficiently large quantum computers will be

built to break essentially all public key schemes currently in use. His-

torically, it has taken almost two decades to deploy our modern public

key cryptography infrastructure. Therefore, regardless of whether we

can estimate the exact time of the arrival of the quantum computing

era, we must begin now to prepare our information security systems to

be able to resist quantum computing”.

We therefore believe that building the next-generation cryptocurrency, which is

safe against quantum attacks, namely, a quantum-resistant cryptocurrency, is a

strategic mission in our crypto community.

1.2 Call for Privacy

Privacy is another key merit that physical cash notes and coins of fiat currency in-

herently possess, and has been one of the most important concerns since cryptocur-

rency was first proposed. In 1983, David Chaum invented a cryptographic primi-

tive called Blind Signature, which can be used for building an untraceable payment

system that separated a person’s identity from their transactions for anonymous
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payments, and based on it, Chaum promoted an electronic cash system called

eCash [24]. Then in the last 1980s, self-proclaimed libertarian anarchist group

‘Cypherpunks’ outlined some tools of modern cryptocurrency (pseudo-anonymous

protection of identity, proof-of-work systems, private/public-key encryption and

separation from government-backed currency [63]) in their memorandum called

“The Crypto Anarchist Manifesto”.

A decade later in 1997, Adam Beck introduced the first successful proof-of-

work algorithm, such algorithms would become an important means of controlling

the token supply of a given cryptocurrency. At the same time, Wei Dai, another

member of the Cypherpunks and a researcher at Microsoft [16], released B-money,

which highlighted the concepts of decentralization and digital contracts [26].

In 2004, Hal Finney, a computer scientist, and Cypherpunk [77] developed the

first successful reusable proof-of-work (RPOW) protocol based on Beck’s earlier

work. RPOW allows users to transfer digital tokens by destroying and creating

tokens during each transfer [34]. This process constituted the first proof-of-work

digital cash system. Meanwhile, Nick Szabo, a computer scientist and cryptog-

rapher, launched a protocol that combined Wei Dai’s concept of decentralization

and Hal Finney’s RPOW to create Bit Gold, the cryptocurrency that served as

the predecessor to Bitcoin [81].

In 2009, the first popularized cryptocurrency – Bitcoin – was launched following

the release of a paper titled, Bitcoin: A Peer-to-Peer Electronic Cash System [65],

by someone writing under the pseudonym Satoshi Nakamoto. Cryptocurrencies

have soared in popularity since 2009 with thousands of different crypto-coins avail-

able.

For most cryptocurrencies, however, the wallet addresses and the number of

crypto-coins in each wallet are stored on the corresponding cryptocurrency’s dis-

tributed ledger indefinitely. Exposure of the traces of crypto-coin flows is in-

evitable. The pseudonymity-based anonymity, which Bitcoin and most of the

cryptocurrencies provision, is a weak form of anonymity due to the lack of un-
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traceability and unlinkability. As all the transactions that take place between the

network’s participants are public, any transaction can be unambiguously traced

to a unique origin and final recipient. Some results [73, 75, 69] have also shown

that a careful or targeted analysis may reveal a connection between users and their

transactions. In addition, there are few options for users to keep their identities

anonymous or to hide the amount, other than, for example, through self-generating

numerous new wallet addresses.

Full privacy means (1) keeping the coin addresses untraceable and unlinkable,

and (2) hiding the transaction amount. Monero, Zcash, and Dash are some of the

prominent ones. The existence of a cryptocurrency which is quantum-resistant and

at the same time provisions full privacy is an open problem, and the cryptocurrency

community has been putting great efforts onto solving this challenge, which is both

theoretically and practically important.

1.3 Privacy vs. Accountability

From the privacy perspective, anonymity is a desirable feature of cryptocurrency.

On the other hand, a strong degree of anonymity would also make cryptocurrency

an ideal tool for conducting crimes or illegal transactions. Abusing anonymous

cryptocurrencies for illegal purposes are on the rise in recent years. For example,

in 2017, the worldwide ransomware attack WannaCry demanded ransom payments

in Bitcoin, which were later converted into cryptocurrencies with a higher degree

of anonymity, such as Monero.

The European Union’s law-enforcement agency, Europol, have also raised alarms

that cryptocurrencies with strong anonymity, such as Monero and Zcash, are gain-

ing popularity over Bitcoin by criminals. There is an urgent need to develop

technologies that can balance the anonymity and accountability so to prevent a

cryptocurrency with full privacy from becoming a handy tool of the criminals.

Provisioning the accountability property in a cryptocurrency with full privacy

is also essential for empowering such a cryptocurrency to support enterprise ap-

13



plications especially for financial services, and regulatory compliance.

1.4 Abelian and its Potential Features

Abelian (ABEL) is a brand new cryptocurrency and a completely new Blockchain

system. It is secure against quantum attacks, and supports full privacy with op-

tional accountability. Abelian’s core cryptographic systems are provably secure

under strong and practical adversarial models. Its implementations follow the

design and will be open for public review. We target to build an open commu-

nity which can continuously improve the security, scalability, and decentralization

of Abelian, and also enable the growth of Abelian ecosystem so that everybody

will be benefiting the security, privacy and accountability of this next-generation

cryptocurrency and Blockchain technology.

1. Quantum-resistance. All cryptographic constructions used in Abelian’s

Blockchain platform are quantum resistant, and are provably secure in strong

security models that capture the most practical attacking scenarios.

2. Full Privacy (with optional accountability). Abelian supports fine-

grained privacy, where users can determine the privacy level for each of their

transactions by selecting one from the following three when they make a

transaction.

(a) Basic privacy: coin addresses (namely the input and output coin

addresses) and transaction amounts are public, while the output coin

addresses are always one-time, freshly generated for each transaction.

Note that this is the best privacy level that Bitcoin and most of the

other conventional cryptocurrencies can achieve today.

(b) Full privacy: no one can break the unlinkability or untraceability of

coin addresses, and transaction amounts are hidden.
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(c) Full privacy with accountability: to a designated authority, it has

the same privacy level as ‘Basic privacy’; to other participants, it is the

same as ‘Full privacy’.

Besides hiding the transaction amounts, to achieve full privacy, no one should

be able to break the unlinkability or untraceability of coin addresses. We will

see in the rest of this manuscript that our idea is to hide the actual input

coin address (called ‘consumed’ coin address) in a group of coin addresses

using linkable ring signature, and keep the output coin addresses public

while the output coin addresses are always one-time, freshly generated for

each transaction. In this way, linkability is not feasible as the destination

addresses are always new and one-time, while the input address of each

transaction is hidden among a group of other addresses.

With such a fine-grained privacy selection capability delineated above, Abelian

can address both individuals’ concerns on privacy and also, fulfill the reg-

ulatory or enterprise requirements on accountability. For individuals, while

transactions with full privacy (with or without accountability) will consume

more communication, computation, and storage resources of the system,

more transaction fees may be required than those with basic privacy. Also,

individuals may consider some external factors such as the fact that account-

ability is more acceptable to regulatory bodies, and depending on the actual

scenarios, the individuals can flexibly choose the privacy level for their trans-

actions from the basic privacy level to the full privacy level, or somewhere

in between, namely, the full privacy with accountability level.

3. Reliable with Proven Track Record PoW-based Consensus. Abelian

builds its consensus on Proof-of-Work (PoW) consensus protocol. For a new

cryptocurrency focusing on advancing technologies on post-quantum readi-

ness, the reliability and security is put at the first place. With its growth and

continuous development along with Bitcoin, PoW has been proven to have
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the merits of trustworthy sustainability, strong robustness against malicious

participants, delicate incentive-compatibility, and openness to every partici-

pant. Having said that, Abelian may evolve itself from PoW into adopting

some other more efficient and potentially environmentally friendly consen-

sus protocols, for example, Proof-of-Stake (PoS). The future of Abelian will

entirely be steered by the Abelian community, which will be open and fair.
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2 Definition of Decentralized Anonymous Pay-

ment Scheme with Optional Accountability

We define a Decentralized Anonymous Payment Scheme with Optional Account-

ability (DAPOA) by generalizing and combining the ideas of Ring Confidential

Transactions in Monero and Decentralized Anonymous Payment Scheme in [9], and

adding the functionalities of optional accountability. The generalization enables

us to identify the essence of the privacy, security, and accountability problems, so

that we can investigate them in the setting of post-quantum cryptography.1

2.1 Notions

We study on a transaction-based ledger for a cryptocurrency2, where transactions

consume existing/old coins and generate new coins, i.e. each coin is an output of a

transaction, and each coin can be consumed only one time by another transaction.

Below, the term ‘output coins’ of a transaction is used to denote the generated

(new) coins by the transaction, and the term ‘input coins’ of a transaction is used

to denote the coins (i.e. the output coins of some previous transactions) referenced

(and taken as input) by the transaction. A transaction consumes some or all of

its input coins, and the term ‘consumed coins’ of a transaction is used to denote

the really consumed ones among its input coins.

For example, in Bitcoin, the consumed coins are the same as the input coins,

while in Monero, the consumed coins are a subset of the input coins. While coins

are consumed and generated by transactions, coins are owned by participants, who

create and have one or multiple pseudonyms, and receive and spend coins using

pseudonyms, trying to hide their identities in reality.

1Monero and Zerocash are described and constructed using concrete number-theoretic cryp-

tographic constructions.
2Bitcoin and most existing cryptocurrencies use transaction-based ledger, while some others,

e.g. Ethereum, use account-based ledger.
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2.1.1 Coins, Transactions, Ledger, and Pseudonym

A transaction output , referred to as TXO, is a data object txo, which is asso-

ciated with the following:

• A coin address, denoted txo.cnaddr: a string determining who owns the coin

implied by txo.

• A coin value, denoted txo.cnvalue: an integer, between 0 and a maximum

value vmax (which is a system parameter, representing the total value of coins

in the system, for example, 21 million for Bitcoin), that is the denomination

of the coin implied by txo.

• A coin value code, denoted txo.cnvaluecode: a string that implies but hides

txo.cnvalue.

• A value hidden flag, denoted txo.valuehidden: a boolean value in {True,False}.
If txo.valuehidden = True, txo is referred to as a value-hidden TXO, other-

wise, txo is referred to as a public TXO.

A coin is a data object cn implied by a TXO txo, and is associated with the

following:

• A coin address, denoted cn.addr: cn.addr = txo.cnaddr.

• A coin secret key, denoted cn.sk: a string known only to the coin owner,

who can spend the coin with coin address cn.addr using the coin secret key.

We also refer to it as coin spending key.

• A coin value, denoted cn.value: the denomination of cn, as an integer

between 0 and a maximum value vmax. If txo.valuehidden = True, cn

is referred to as a ‘value-hidden coin’, with cn.value being determined by

txo.cnvaluecode, otherwise, cn is referred to as a ‘public coin’, with cn.value =

txo.cnvalue.
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Note that each TXO implies one and only one coin, we may use ‘TXO’ and ‘coin’

as the same thing when it doesn’t cause confusion.

A transaction is a data object tx, which is associated with the following:

• A set of output TXOs, denoted tx.outtxo[]: each element of tx.outtxo[] is a

TXO, implying an output coin.

• A set of input TXOs, denoted tx.intxo[]: a set of references to the output

TXOs of previous transactions, each implying an input coin.

• A set of consumed TXOs, denoted tx.csdtxo[]: a subset of tx.intxo[], rep-

resenting the input TXOs that are really consumed by tx, each implying a

consumed coin.

• A transaction fee, denoted tx.fee: an integer between 0 and vmax. For a

transaction, the total value of the output coins implied by tx.outtxo[], say

vout, should not exceed that of the consumed coins, say vin, i.e. 0 ≤ vout ≤
vin ≤ vmax, and tx.fee = vin − vout.

Remark: For a transaction tx, while the output TXOs, input TXOs, and the trans-

action fee are public, the consumed TXOs may be hidden and only the transaction

issuer knows which elements in tx.intxo[] are consumed. In addition, for each out-

put TXO, only the owner knows the implied coin, i.e. the (coin value, coin secret

key) pair.

Ledger. At any given time T , all participants have access to LT , the ledger at

time T, which is a sequence of transactions. The ledger is append-only (i.e., T < T ′

implies that LT is a prefix of LT ′).3

A pseudonym is an object pdn representing an identity of a participant in the

cryptocurrency, which is associated with:

3In reality, the ledger (such as the one of Bitcoin) is not perfect and may incur temporary

inconsistencies.
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• A pseudonym address, denoted pdn.addr: a unique string representing the

pseudonym. A pseudonym owner uses his pseudonym address to receive coins

via transactions.

• A pseudonym secret key, denoted pdn.sk: a string known only to the owner

of the pseudonym. The owner can use this pseudonym secret key to spend

the coins received via the corresponding pseudonym address.

Remark: In a cryptocurrency, a participant may have one or multiple pseudonyms,

and through each pseudonym, he can own one or multiple coins, but each coin is

owned by only one pseudonym. We define pdn(cn) as the pseudonym through

which the coin owner owns the coin.

Note that the above notations are general, and different cryptocurrencies may have

different instances. For example,

• Bitcoin: For a pseudonym pdn, (pdn.addr := H(pk), pdn.sk := sk), where

(pk, sk) is a (public key, secret key) pair for a signature scheme, and H is a

cryptographic hash function. For a coin cn, the corresponding TXO has coin

address cn.addr := pdn.addr for some pseudonym pdn, the coin secret key

is cn.sk := pdn.sk for the same pdn. It is easy for anyone to find pdn(cn),

since the coin address of the corresponding TXO is public in the transaction

and the coin address is just the pseudonym address.

• Monero: For a pseudonym pdn, the pseudonym address is pdn.addr :=

(A,B), the pseudonym secret key is pdn.sk := (a, b), where A = aG,B = bG.

Note that (A, a) (resp. (B, b)) is a (public key, secret key) pair for a signa-

ture scheme. For a coin cn, suppose the coin is owned by a participant

through a pseudonym pdn with address pdn.addr = (A,B), the coin address

is cn.addr = H(rA)G+B, the coin secret key is cn.sk = H(aR)+ b, where r

is chosen randomly by the participant who sends the coin to pdn and R = rG

is received from the sender. Except the coin owner who knows the value of
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(a, b), no one can find pdn(cn) from the coin information in the transaction,

i.e. cn.addr = H(rA)G+B and R.

2.1.2 Transactions for Protecting Privacy

As the transactions in the ledger are public and consequently are the source of

privacy leakage, the following ways have been considered to protect the privacy of

participants:

1. cutting the linkage between the transaction output coins and the pseudonyms,

i.e. hiding the receiver/owner of a transaction output coin;

2. hiding the transaction consumed coins;

3. hiding the values of the transaction output coins.

Inspired by CryptoNote and Monero, DAPOA hides the coin receiver by using

one-time coin address which is generated from the receiver’s pseudonym address

by the transaction sender, and hides the consumed coins by mixing them in a

larger input coin set.

Four types of transaction are defined below to support full privacy with optional

accountability: (1) public transaction consumes public coins, which have public

coin address and public coin value, and generates public coins, and the consumed

coins are just the input coins; (2) mask transaction consumes a public coin and

generates a value-hidden coin, which has public coin address and hidden coin value,

and the consumed coin is just the input coin; (3) private transaction consumes

value-hidden coins and generates value-hidden coins, and the consumed coins are

hidden in a larger input coin set; (4) unmask transaction consumes a value-hidden

coin and generates a public coin. From the view of functionalities, as shown in

Fig.1, when a coin is initially generated4, it is a public coin. If the owner of a public

4The term ‘coinbase transaction’ is borrowed from Bitcoin, and is used to denote a transaction

that takes no input coins but generates a new coin. Note that any cryptocurrency has a similar

mechanism to create coins.

21



Figure 1: Four Types of Transactions

coin does not care the privacy, he may transact this coin using public transactions,

otherwise, he may use a mask transaction to transfer this public coin to a value-

hidden coin, and then transact the value-hidden coin using private transactions.

When a user wishes to hold public coins, he can use the unmask transaction to

transfer a value-hidden coin back to a public coin.

Coinbase Transaction. A coinbase transaction CbTx is a tuple (outtxo; ∗),
where outtxo is a public TXO, and * denotes other (implementation-dependent)

information. The transaction CbTx records that a coin implied by TXO outtxo is

generated.

Public Transaction. A public transaction PubTx is a tuple (n, intxo[];m, outtxo[];

spf ; ∗), where n is the number of input TXOs, intxo[] is the set of input TXOs,

each of which references a public TXO output by some previous transaction, m is

the number of output TXOs, outtxo[] is the set of output TXOs, each of which is

a public TXO, spf is a string proving that the transaction is valid, and * denotes

other (implementation-dependent) information. The transaction PubTx records

that n coins implied by the TXOs in intxo[] are consumed and m new coins im-
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plied by TXOs in outtxo[] are generated. The transaction fee PubTx.fee can be

computed from intxo[] and outtxo[] since the values of the coins implied by intxo[]

and outtxo[] are public in intxo[] and outtxo[].

Mask Transaction. A mask transaction MsTx is a tuple (intxo; outtxo, outvalue;

spf ; ∗), where intxo is an input public TXO output by some previous transaction,

outtxo is a value-hidden TXO which implies a value-hidden coin with coin value

outvalue such that 0 ≤ outvalue ≤ intxo.cnvalue, spf is a string proving that

the transaction is valid, and * denotes other (implementation-dependent) infor-

mation. The transaction MsTx records that a public coin implied by intxo is

consumed and a value-hidden coin implied by outtxo has been generated. The

value of the new value-hidden coin is outvalue 5 , and the transaction fee is

MsTx.fee = intxo.cnvalue− outvalue.

Private Transaction. A private transaction PriTx is a tuple (l, n, intxo[];m,

outtxo[], valuefee; spf, csdcnsn[]; trackable, tif ; ∗), where l is the number of input

coins, n is the number of consumed coins, intxo[] is the set of input TXOs, each

of which references a value-hidden TXO output by some previous transaction, m

is the number of output TXOs, outtxo[] is the set of output TXOs, each of which

is a value-hidden TXO, valuefee is an integer in [0, vmax] for transaction fee, spf

and csdcnsn[] form a proof that the transaction is valid, where csdcnsn[] is the

set of the serial numbers of the consumed coins, trackable ∈ {True,False} implies

whether the transaction is accountable, tif is a string that may be used by a des-

ignated authority to track the transaction (tif could be null if the transaction is

not accountable), and * denotes other (implementation-dependent) information.

The transaction PriTx records that n of the l input coins implied by intxo[] are

consumed and m new coins implied by outtxo[] are generated. As the TXOs refer-

5Note that MsTx.outtxo implies a value-hidden coin, but the value of the coin can be learned

from the transaction MsTx. The functionality of mask transaction is to generate value-hidden

coins which can be transacted by private transactions.
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enced by intxo[] and the TXOs in outtxo[] are value-hidden, so that the transaction

fee cannot be computed directly from the input and output coins, transaction fee

valuefee is explicitly given in the transaction.

Unmask Transaction. An unmask transaction UmTx is a tuple (intxo, invalue;

outtxo; spf, csdcnsn; ∗), where intxo is an input value-hidden TXO output by some

previous transaction, invalue is the coin value of the coin implied by intxo such

that 0 ≤ invalue ≤ vmax, outtxo is a public TXO which implies a public coin, spf

and csdcnsn form a proof that the transaction is valid where csdcnsn is the serial

number of the consumed coin, and * denotes other (implementation-dependent)

information. The transaction UmTx records that a value-hidden coin implied by

intxo is consumed and a public coin implied by outtxo has been generated. The

value of the consumed coin is invalue 6 and the transaction fee is UmTx.fee =

invalue− outtxo.cnvalue.

Remark: A public transaction consumes public coins and generates public coins,

without hiding the coin values or the consumed coins, and provides only pseudonym

level of anonymity. Mask transaction transfers a public coin to a value-hidden

coin, just preparing value-hidden coins for privacy-protecting transactions – private

transactions, and unmask transaction transfers a value-hidden coin back to a pub-

lic coin. Note that as the coin value of the output (resp. input) value-hidden coin of

mask (resp. unmask) transaction is explicitly included in the mask (resp. unmask)

transaction, mask and unmask transactions provide only pseudonym anonymity.

Private transaction consumes value-hidden coins and generates value-hidden coins,

and hides the consumed coins in a larger input coin set, so that it provides full

privacy.

6Note that the intxo references a value-hidden TXO, and the owner of the consumed coin has

to put the coin value of the consumed coin in the unmask transaction.
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2.2 Definition of DAPOA

A DAPOA scheme Π is a tuple of polynomial-time algorithms (Setup,CreateTrackingKey,

CreatePseudonym,DeriveCoinAddress,VerifyCoinAddress,DeriveCoinSK,HideCoinValue,

OpenCoinValue,ComputeCoinSN, Coinbase, TransactPublic,Mask, Unmask,TransactPrivate,

VerifyTransaction,Receive, TrackTransaction,VerifyTrack) with the following syntax

and semantics.

System Setup. The algorithm Setup generates a list of public parameters.

Setup

• INPUTS: a security parameter λ.

• OUTPUTS: public parameters PP.

PP just contains some common public parameters, and the system does not require

a trusted party to run the Setup algorithm. PP are published and made available

to all parties (e.g., by embedding them into the protocol’s implementation). The

setup is done only once.

Create Tracking Key. The algorithm CreateTrackingKey generates a (public

key, secret key) pair for accountability.

CreateTrackingKey

• INPUTS: public parameters PP.

• OUTPUTS: a tracking key pair (PKT, SKT).

A tracking authority runs the CreateTrackingKey algorithm and obtains the track-

ing key pair (PKT, SKT). The tracking public key PKT is published, while the

tracking secret key SKT is kept secretly by the tracking authority.
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Create Pseudonym. The algorithm CreatePseudonym generates a pseudonym

pdn with (pseudonym address, pseudonym secret key).

CreatePseudonym

• INPUTS: public parameters PP.

• OUTPUTS: a pseudonym (pdnaddr, pdnsk).

Each participant generates at least one (pseudonym address, pseudonym secret

key) pair (pdnaddr, pdnsk) in order to receive coins. The pseudonym address

pdnaddr is published, while the pseudonym secret key pdnsk is used to redeem

the coins received through pdnaddr.

Derive Coin Address. The algorithm DeriveCoinAddress derives a coin address

cnaddr from a pseudonym address.

DeriveCoinAddress

• INPUTS:

– public parameters PP.

– pseudonym address pdnaddr.

• OUTPUTS:

– a coin address cnaddr.

When a participant wants to issue a transaction, he derives a coin address for each

output TXO, from the pseudonym address of the TXO’s receiver.

Verify Coin Address. The algorithm VerifyCoinAddress verifies whether a pseudonym

is the receiver of a coin address.

VerifyCoinAddress

• INPUTS:
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– public parameters PP.

– coin address cnaddr.

– pseudonym pdn with (pseudonym address, pseudonym secret key)

pair (pdnaddr, pdnsk).

• OUTPUTS:

– a bit b ∈ {0, 1}, equals 1 iff cnaddr is derived from pdnaddr.

When a participant receives a transaction, for each TXO of the transaction, he can

verify whether the TXO’s coin address is derived from his pseudonym address, i.e.

whether he is the receiver of the implied coin.

Derive Coin Secret Key. The algorithm DeriveCoinSK derives a coin secret

key corresponding to a coin address cnaddr.

DeriveCoinSK

• INPUTS:

– public parameters PP.

– coin address cnaddr.

– pseudonym with (pseudonym address, pseudonym secret key) pair

(pdnaddr, pdnsk).

• OUTPUTS:

– a coin secret key cnsk,

if VerifyCoinAddress(cnaddr, pdnaddr, pdnsk) = 1 ; ⊥ otherwise.

For an output TXO txo of a transaction, the corresponding receiver can compute

the coin secret key cnsk corresponding to txo.cnadrr, using his (pseudonym ad-

dress, pseudonym secret key).

27



Hide Coin Value. The algorithm HideCoinValue generates a string coinvaluecode

from an integer coinvalue which represents a coin value.

HideCoinValue

• INPUTS:

– public parameters PP.

– coin value coinvalue, which is an integer such that 0 ≤ coinvalue ≤
vmax.

• OUTPUTS:

– a string coinvaluecode.

The string coinvaluecode implies but hides a coin value.

Open Coin Value. The algorithm OpenCoinValue verifies whether a string

coinvaluecode is for a coin value coinvalue.

OpenCoinValue

• INPUTS:

– public parameters PP.

– coin value coinvalue, which is an integer such that 0 ≤ coinvalue ≤
vmax.

– coin value code coinvaluecode.

• OUTPUTS:

– a bit b ∈ {0, 1}, equals 1 iff coinvaluecode and coinvalue match.

Given a string coinvaluecode and a coin value coinvalue, OpenCoinValue can be

used to check whether coinvaluecode does imply the coin value coinvalue.
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Compute Coin Serial Number. The algorithm ComputeCoinSN computes a

coin serial number for a coin.

ComputeCoinSN

• INPUTS:

– public parameters PP.

– coin address cnaddr.

– coin secret key cnsk.

• OUTPUTS:

– a string sn.

For a coin cn, its serial number sn ← ComputeCoinSN(PP, cn.addr, cn.sk) is a

unique identifier, i.e. for two coins cn1 and cn2, let sni = ComputeCoinSN(PP, cni.addr,

cni.sk) (i = 1, 2), then sn1 = sn2 iff cn1.addr = cn2.addr AND cn1.sk = cn2.sk.

Create Coins. The algorithm Coinbase generates a public TXO outtxo.

Coinbase

• INPUTS:

– public parameters PP.

– output coin value outvalue: the value for the new coin, with 0 ≤
outvalue ≤ vmax.

7

– receiver’s pseudonym address pdnaddr.

• OUTPUTS:

7Note that the value for the new coin may be determined by the coin issue policy of the

cryptocurrency, for example, the transaction fees of related transactions, the mining rewards.

For simplicity, here we just use coinbase transaction to issue new coin values, without collecting

the transaction fee.
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– a public TXO outtxo: outtxo.valuehidden = False,

outtxo.cnvalue = outvalue, outtxo.cnvaluecode is null,

outtxo.cnaddr ← DeriveCoinAddress(PP, pdnaddr).

– a coinbase transaction CbTx = (outtxo; ∗).

Note that Coinbase transaction does not directly use the receiver’s pseudonym

address as the output coin address. Actually, no transaction in DAPOA directly

uses the receiver’s pseudonym address as the output coin address.

Transacting Public Coins. The algorithm TransactPublic consumes public coins

and transfers the value to new public coins. TransactPublic allows users to sub-

divide coins into smaller denominations, merge coins, and transfer ownership of

public coins.

TransactPublic

• INPUTS:

– public parameters PP.

– the number of input TXOs n.

– input TXOs intxo[]: for i = 1 to n, intxo[i] references a public TXO

output by some previous transaction.

– consumed coins csdcn[]: for i = 1 to n, csdcn[i] is the coin im-

plied by intxo[i], with csdcn[i].sk and csdcn[i].value known and

csdcn[i].addr = intxo[i].cnaddr.

– the number of output TXOs m.

– (receiver’s pseudonym address, value) pairs out[]: for j = 1 to m,

out[j] is a (pseudonym address, value) pair (pdnaddr, value). The

values satisfy the conditions that 0 ≤ out[j].value ≤ vmax and∑m
j=1 out[j].value ≤

∑n
i=1 intxo[i].cnvalue.

• OUTPUTS:
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– a set of new public TXOs outtxo[]: for j = 1 to m,

outtxo[j].valuehidden = False, outtxo[j].cnvalue = out[j].value,

outtxo[j].cnvaluecode is null,

outtxo[j].cnaddr ← DeriveCoinAddress(PP, out[j].pdnaddr).

– a public transaction PubTx = (n, intxo[];m, outtxo[]; spf ; ∗).

The TransactPublic algorithm consumes all the n input public TXOs (i.e. the

implied coins), and for each (pseudonym address, value) pair it generates a public

TXO (implying a coin). The transaction fee does not need to be included in the

resulting PubTx, since both the input coins and the output coins are public coins

so that the transaction fee can be computed from the coin values by anyone. Note

that the order of the TXOs in outtxo[] is determined by the participant who issues

this transaction and can randomly arrange the order when it is necessary, i.e. an

outsider cannot link a coin address to corresponding pseudonym address.

Masking Coins. The algorithm Mask consumes a public coin and generates a

value-hidden coin.

Mask

• INPUTS:

– public parameters PP.

– input TXO intxo: intxo references a public TXO output by some

previous transaction.

– consumed coin csdcn: csdcn is the coin implied by intxo, with

csdcn.sk and csdcn.value known and csdcn.addr = intxo.cnaddr.

– output coin value outvalue: the value for the new coin, with 0 ≤
outvalue ≤ intxo.cnvalue.

– receiver’s pseudonym address pdnaddr.

• OUTPUTS:
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– a value-hidden TXO outtxo: outtxo.valuehidden = True,

outtxo.value is null,

outtxo.cnvaluecode← HideCoinValue(PP, outvalue),

outtxo.cnaddr ← DeriveCoinAddress(PP, pdnaddr).

– a mask transaction MsTx = (intxo; outtxo, outvalue; spf ; ∗).

The participant (i.e. the owner of the input coin) knows the coin secret key

and can issue the mask transaction. The transaction fee is MsTx.into.cnvalue −
MsTx.outvalue.

Unmasking Coins. The algorithm Unmask consumes a value-hidden coin and

generates a public coin.

Unmask

• INPUTS:

– public parameters PP.

– input TXO intxo: intxo references a value-hidden TXO output by

some previous transaction.

– consumed coin csdcn: csdcn is the coin implied by intxo, with

csdcn.sk and csdcn.value known and csdcn.addr = intxo.cnaddr.

– output coin value outvalue: the value for the new coin, with 0 ≤
outvalue ≤ csdcn.value.

– receiver’s pseudonym address pdnaddr.

• OUTPUTS:

– a public TXO outtxo: outtxo.valuehidden = False,

outtxo.cnvalue = outvalue, outtxo.cnvaluecode is null,

outtxo.cnaddr ← DeriveCoinAddress (PP, pdnaddr).
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– a unmask transaction UmTx = (intxo, incnvalue; outtxo; spf, csdcnsn; ∗),
with invalue = csdcn.value and csdcnsn = ComputeCoinSN(PP, csdcn.

addr, csdcn.sk).

The participant (i.e. the owner of the input coin) knows the coin secret key and

coin value of the value-hidden coin implied by intxo, and can issue the unmask

transaction. The transaction fee is UmTx.incnvalue− UmTx.outtxo.cnvalue.

Transacting Private Coins. The algorithm TransactPrivate consumes a subset

of the input coins and transfers the value to new output coins. Both the input

coins and the output coins are value-hidden coins. TransactPrivate allows users to

subdivide coins into smaller denominations, merge coins, and transfer ownership

of value-hidden coins.

TransactPrivate

• INPUTS:

– public parameters PP.

– number of the input TXOs l.

– input TXOs intxo[]: for i = 1 to l, intxo[i] references a value-hidden

TXO output by some previous transaction.

– number of the coins to be consumed n: l = t× n for some t ≥ 1.

– coins to be consumed csdcn[]: for k = 1 to n, csdcn[k] is a coin

implied by intxo[ik], with csdcn[k].sk and csdcn[k].value known

and csdcn[k].addr = intxo[ik].cnaddr.

– the number of output TXOs m.

– (receiver’s pseudonym address, value) pairs out[]: for j = 1 to

m, out[j] is a (pseudonym address, value) tuple (pdnaddr, value),

where 0 ≤ out[j].value ≤ vmax and
∑m

j=1 out[j].value ≤
∑n

k=1 csdcn[k].

value.
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– a transaction fee valuefee with valuefee =
∑n

k=1 csdcn[k].value −∑m
j=1 out[j].value.

– (optional) a tracking public key PKT.

• OUTPUTS:

– a set of TXOs outtxo[]: for j = 1 to m,

outtxo[j].valuehidden = True, outtxo[j].value = null,

outtxo[j].valuecode← HideCoinValue(PP, out[j].value),

and outtxo[j].cnaddr ← DeriveCoinAddress(PP, out[j].pdnaddr).

– a private transaction PriTx = (l, n, intxo[];m, outxo[], valuefee; spf,

csdcnsn[]; trackable, tif ; ∗), where csdcnsn[k] = ComputeCoinSN(PP,

csdcn[k].addr, csdcn[k].sk), and trackable = True if the optional in-

put tracking public key is not null, otherwise tracklable = False.

The TransactPrivate algorithm takes in a set of coins, say l value-hidden coins, but

only consumes a subset of the input coins, say n value-hidden coins. Thus the

consumed coins are hidden in the set of input coins. The ‘tracking public key’ is

an optional input, either PKT or null, determined by the participant who issues

the private transaction. If ‘tracking public key’ is null, the tif in PriTx is also

null. The transaction fee needs to be explicitly given in the transaction, since the

input and output TXOs are all value-hidden, so that the transaction fee cannot

be computed from the input and output TXOs. Note that order of the elements

in outtxo[] is determined by the participant who issues this transaction and can

randomly arrange the order when it is necessary.

Verifying Transactions. The algorithm VerifyTransaction checks the validity of

a transaction.

VerifyTransaction

• INPUTS:
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– public parameters PP

– a (coinbase, public, mask, private, or unmask) transaction Tx.

– the current ledger L.

• OUTPUTS:

– a bit b ∈ {0, 1}, equals 1 iff the transaction is valid.

The coinbase, public, mask, private, and unmask transactions must be verified be-

fore being considered well-formed. In practice, transactions can be verified by the

nodes in the distributed system maintaining the ledger, as well as by participants

who rely on these transactions.

Receiving Coins. The algorithm Receive scans the ledger and retrieves coins

paid to a particular pseudonym address.

Receive

• INPUTS:

– public parameters PP.

– recipient (pseudonym address, pseudonym secret key) pair (pdnaddr,

pdnsk).

– a (coinbase, public, mask, private, or unmask) transaction Tx on

current ledger L.

– an output TXO txo of Tx.

• OUTPUTS:

– a coin cn, or ⊥ implying that txo is not for the pseudonym address

pdnaddr.

When a participant with (pseudonym address, pseudonym secret key) pair (pdnaddr,

pdnsk) wishes to receive payments sent to him via pdnaddr, he uses the Receive

algorithm to scan the ledger. 8

8Actually, the participant only needs to scan the incremented transactions since last scanning.
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Tracking Transactions. Given a valid private transaction (verified by the al-

gorithm VerifyTransaction), the algorithm TrackTransaction obtains the consumed

TXOs and the coin value for each output value-hidden TXO txo.

TrackTransaction

• INPUTS:

– public parameters PP.

– a private transaction PriTx = (l, n, intxo[];m, outtxo[], valuefee; spf,

csdcnsn[]; trackable, tif ; ∗) on current ledger L, with trackable =

True.

– a tracking secret key SKT.

• OUTPUTS:

– set of consumed TXOs csdtxo[]: csdtxo[] is a subset of PriTx.intxo[],

having n elements.

– set of public TXOs pubtxo[]: for j = 1 to m,

pubtxo[j].valuehidden = False,

pubtxo[j].cnaddr = PriTx.outtxo[j].cnaddr,

pubtxo[j].cnvaluecode = PriTx.outtxo[j].cnvaluecode,

pubtxo[j].cnvalue satisfies

OpenCoinValue (PP,PriTx.outtxo[j].cnvaluecode, pubtxo[j].cnvalue) = 1.

When the authority wishes to track a private transaction which is set to be track-

able by the transaction issuer, he uses the TrackTransaction algorithm with his

tracking secret key as input, to identify the consumed TXOs of the transaction

and reveal the coin values of the output value-hidden TXOs of the transaction.

Note that if he also wants to know the coin values of the consumed TXOs, he just

needs to track the previous transactions which generated these consumed TXOs.

Verifying Track. The algorithm VerifyTrack checks the validity of the tracking

result of VerifyTransaction algorithm on a private transaction.
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VerifyTrack

• INPUTS:

– public parameters PP.

– tracking public key PKT .

– a private transaction PriTx on current ledger L.

– set of consumed TXOs csdtxo[].

– set of public TXOs pubtxo[].

• OUTPUTS:

– a bit b ∈ {0, 1}, equals 1 iff the tracking result (csdtxo[], pubtxo[])

is valid.

For a valid private transaction PriTx, only if the tracking result (csdtxo[], pubtxo[])

is verified valid, the tracking result is accepted.

Remark: Above we only consider the simplest tracking mechanism, i.e. one author-

ity, one tracking key. We can extend and improve this part, for example, multiple

authorities cooperate to generate the tracking key, and transaction issuer specifies

the tracking public key in a flexible manner, so that an authorized auditor cannot

track all transactions in the ledger, instead, he can track only the transactions

with particular tracking tag.

Note that a public transaction consumes all input coins and generates public coins,

a mask (resp. unmask) transaction consumes a public (resp. value-hidden) coin

and generates a value-hidden (resp. public) coin, but the coin value of the value-

hidden coin in mask (resp. unmask) transaction can be obtained from the transac-

tion. In other words, public, mask, and unmask transactions do not provide privacy

except the pseudonym anonymity. Private transactions provide full privacy by hid-

ing the consumed coins in a larger input coin set and generating value-hidden coins

of which the values are not available from the transaction. Even when a private
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transaction is tracked by an authority, it still remains pseudonym anonymity to

the authority, like the public transaction.

It is worth mentioning that the pseudonym level of anonymity of Abelian is

a still slightly stronger than that of Bitcoin. In Bitcoin, a coin address is just

a pseudonym address of the receiver, and it is provided by the receiver to the

transaction issuer, so that a receiver may use one pseudonym (address) to receive

multiple coins and as a result multiple coins are linked to the same pseudonym. As

well known, to get stronger pseudonym anonymity, it is suggested to use one-time

coin addresses, i.e. one address for one coin. In Bitcoin, whether the pseudonym

anonymity of one-time coin address is achieved depends on whether the participant

generates a new pseudonym for each coin to be received. In Abelian, one-time coin

address is compulsory, i.e. for each coin sent to a pseudonym address, the sender

derives a new one-time coin address from the pseudonym. A malicious sender

may attempt to use the same coin address multiple times for a receiver, but the

receiver can detect such a malicious behavior easily and reject the transactions

with repeated output addresses. Also as defined later, the derived coin address

cannot be linked to the corresponding pseudonym. Note that as the coin address

is generated on-the-fly by the transaction issuer, the coin address does not leak its

owner’s pseudonym.

2.3 Correctness of DAPOA

The correctness of DAPOA includes the verification of the derived coin address,

the verification of coinbase/public/mask/private/unmask transactions, the receiv-

ing of the output coins of coinbase/public/mask/private/unmask transaction, the

tracking of private transactions, and the verification of the tracking results.

For any PP← Setup(λ), (PKT, SKT)← CreateTrackingKey(PP), current ledger L,

• for any value such that 0 ≤ value ≤ vmax, and any pseudonym address
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pdnaddr such that (pdnaddr, pdnsk)← CreatePseudonym(PP), let

(outtxo,CbTx)← Coinbase(PP, value, pdnaddr),

b← VerifyTransaction(PP,CbTx, L),

b′ ← VerifyCoinAddress(PP,CbTx.outtxo.cnaddr, pdnaddr, pdnsk),

cn← Receive(PP, pdnaddr, pdnsk,CbTx,CbTx.outtxo),

where CbTx = (outtxo; ∗), it holds that

– b = 1, implying CbTx is a valid transaction.

– b′ = 1, implying the coin address CbTx.outtxo.cnaddr is valid for pseudonym

address pdnaddr.

– cn is a coin with cn.addr = CbTx.outtxo.cnaddr, cn.value = value, and

cn.sk = DeriveCoinSK(PP,CbTx.outtxo.cnaddr, pdnaddr, pdnsk).

• for any unspent public TXO set intxo[] with size n and the corresponding

coins csdcn[], any (pseudonym address, value) pairs out[] = {(pdnaddrj, valuej
)}mj=1 with sizem such that {(pdnaddrj, pdnskj)← CreatePseudonym(PP)}mj=1

and 0 ≤ out[j].value ≤ vmax,
∑m

j=1 out[j].value ≤
∑n

i=1 intxo[i].cnvalue, let

(outtxo[],PubTx)← TransactPublic(PP, n, intxo[], csdcn[],m, out[]),

b← VerifyTransaction(PP,PubTx, L),

{b′k,j ← VerifyCoinAddress(PP,PubTx.outtxo[j].cnaddr, pdnaddrk, pdnskk),

cnk,j ← Receive(PP, pdnaddrk, pdnskk,PubTx,PubTx.outtxo[j])}mk,j=1,

where PubTx = (n, intxo[];m, outtxo[]; spf ; ∗), it holds that

– b = 1, implying PubTx is a valid transaction.

– if k = j, b′k,j = 1 and cnk,j is a coin with

cnk,j.addr = PubTx.outtxo[j].cnaddr, cnk,j.value = out[j].value,

cnk,j.sk = DeriveCoinSK (PP,PubTx.outtxo[j]. cnaddr, pdnaddrk, pdnskk);
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otherwise b′k,j = 0 and cnk,j = ⊥, implying that pdnaddrk is not the

intended receiver of PubTx.outtxo[j].

• for any unspent public TXO intxo and the corresponding coin csdcn, any

outvalue such that 0 ≤ outvalue ≤ vmax, outvalue ≤ intxo.cnvalue, and any

pseudonym address pdnaddr such that (pdnaddr, pdnsk)← CreatePseudonym(PP),

let

(outtxo,MsTx)← Mask(PP, intxo, csdcn, outvalue, pdnaddr),

b← VerifyTransaction(PP,MsTx, L),

b′ ← VerifyCoinAddress(PP,MsTx.outtxo.cnaddr, pdnaddr, pdnsk),

cn← Receive(PP, pdnaddr, pdnsk,MsTx,MsTx.outtxo),

where MsTx = (intxo; outtxo, outvalue; spf ; ∗), it holds that

– b = 1, implying MsTx is a valid transaction.

– b′ = 1, implying the coin address MsTx.outtxo.cnaddr is valid for

pseudonym address pdnaddr.

– cn is a coin with cn.addr = MsTx.outtxo.cnaddr, cn.value = outvalue,

and cn.sk = DeriveCoinSK(PP,MsTx.outtxo.cnaddr, pdnaddr, pdnsk).

• for any unspent value-hidden TXO intxo and the corresponding coin csdcn,

any outvalue such that 0 ≤ outvalue ≤ csdcn.value, and any pseudonym

address pdnaddr such that (pdnaddr, pdnsk)← CreatePseudonym(PP), let

(outtxo,UmTx)← Unmask(PP, intxo, csdcn, outvalue, pdnaddr),

b← VerifyTransaction(PP,UmTx, L),

b′ ← VerifyCoinAddress(PP,UmTx.outtxo.cnaddr, pdnaddr, pdnsk),

cn← Receive(PP, pdnaddr, pdnsk,UmTx,UmTx.outtxo),

where UmTx = (intxo, incnvalue; outtxo; spf, csdcnsn; ∗) with incnvalue =

csdcn.value, it holds that
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– b = 1, implying UmTx is a valid transaction.

– b′ = 1, implying the coin address UmTx.outtxo.cnaddr is valid for

pseudonym address pdnaddr.

– cn is a coin with cn.addr = UmTx.outtxo.cnaddr, cn.value = outvalue,

and cn.sk = DeriveCoinSK(PP,UmTx.outtxo.cnaddr, pdnaddr, pdnsk).

• for any value-hidden TXO set intxo[] with size l, let csdcn[] is a set of unspent

coins with size n such that for k ∈ {1, . . . , n} csdcn[k] is the coin implied

by TXO intxo[ik] for some ik ∈ {1, . . . , l}, and let csdidx = {i1, . . . , in}.
For any (pseudonym address, value) pairs out[] = {(pdnaddrj, valuej)}mj=1

with size m such that {(pdnaddrj, pdnskj) ← CreatePseudonym(PP)}mj=1

and 0 ≤ out[j].value ≤ vmax,
∑m

j=1 out[j].value ≤
∑n

k=1 csdcn[k].value, let

transaction fee be valuefee =
∑n

k=1 csdcn[k].value−
∑m

j=1 out[j].value,

(outtxo[],PriTx)← TransactPrivate(PP, l, n, intxo[], csdcn[],m, out[], valuefee, [PKT]),

b← VerifyTransaction(PP,PriTx, L),

{b′k,j ← VerifyCoinAddress(PP,PriTx.outtxo[j].cnaddr, pdnaddrk, pdnskk),

cnk,j ← Receive(PP, pdnaddrk, pdnskk,PriTx,PriTx.outtxo[j])}mk,j=1,

where PriTx = (l, n, intxo[];m, outtxo[], valuefee; spf, csdcnsn[]; trackable, tif ; ∗),
it holds that

– b = 1, implying PriTx is a valid transaction.

– if k = j, b′k,j = 1 and cnk,j is a coin with cnk,j.addr = PriTx.outtxo[j].cnaddr,

cnk,j.value = out[j].value, cnk,j.sk ← DeriveCoinSK(PP,PriTx.outtxo[j]

.cnaddr, pdnaddrk, pdnskk); otherwise b′k,j = 0 and cnk,j = ⊥, implying

that pdnaddrk is not the intended receiver of PriTx.outtxo[j].

– if trackable = True, let (csdtxo[], pubtxo[])← TrackTransaction(PP,PriTx,

L, SKT),
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∗ csdtxo[] is a subset of intxo[] with size n, let trcsdidx = {j1, . . . , jn}
be the index set of csdtxo[]’s elements in intxo[], it holds that

trcsdidx = csdidx.

∗ pubtxo[] is a set of public TXOs with size m, for j = 1 to m,

pubtxo[j].valuehidden = False,

pubtxo[j].cnvalue satisfies

OpenCoinValue(PP,PriTx.outtxo[j].cnvaluecode, pubtxo[j].cnvalue) = 1,

pubtxo[j].cnvaluecode is null,

and pubtxo[j].cnaddr = PriTx.outtxo[j].cnaddr.

∗ let bT ← VerifyTrack(PP,PKT ,PriTx, L, csdtxo[], pubtxo[]), it holds

that bT = 1.

2.4 Security of DAPOA

A DAPOA scheme is secure, if it is ensured that

• Only the participant who knows the coin secret key can issue a transaction

to consume the coin.

• Each coin can be spent only once.

• The total value of the new generated coins and the transaction fee is equal

to the total value of the consumed coins.

• The value of each new generated coin and the transaction fee is in a certain

range [0, vmax].

• For a transaction output TXO, only using the secret key for the target

pseudonym can compute the secret key for the coin implied by the TXO.

The core of these security requirements is the VerifyTransaction() algorithm, once

an attacker can issue transactions that pass the verification and break the above
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requirements, the scheme is not secure. Below, we formally define the security of

DAPOA.

Definition 1 Given a DAPOA scheme (Setup,CreateTrackingKey,CreatePseudonym,

DeriveCoinAddress,VerifyCoinAddress,DeriveCoinSK,HideCoinValue,OpenCoinValue,

ComputeCoinSN,Coinbase,TransactPublic,Mask, Unmask,TransactPrivate,

VerifyTransaction,Receive, TrackTransaction,VerifyTrack), and a PPT adversary A,

consider the following game:

1. Setup.

(a) PP are generated using Setup(1λ, ω) where ω is the randomness used to

run Setup, PP and ω are given to A.

(b) (PKT, SKT) is generated using CreateTrackingKey(PP), and (PKT, SKT)

is given to A. 9

(c) An empty ledger L = ∅ is initialized and given to A.

(d) Below some internal states are initialized. Note that the ledger L is

a global status, and A would make queries adaptively according to this

global status, and the response given to A is also based on this global

status. The following internal status could be obtained from the global

status, and we define them explicitly just to describe the game clearly

and easily.

• A total value vtotal = 0 is initialized.

• An empty pseudonym list PdnL = ∅ is initialzied, where each ele-

ment in PdnL is a (pseudonym address, pseudonym secret key, is

corrupted) tuple (pdnaddr, pdnsk, iscorrupted).

• An empty pseudonym list PdnaddrLA is initialzied, which is used

to store the pseudonym address created by A.

9The security requires that the tracking authority cannot forgeable a transaction or double

spend.

43



• An empty TXO list TxoL = ∅ is initialized, where each element in

TxoL is a (TXO, is consumed, coin, is corrupted, owner pseudonym

address) tuple (txo, isconsumed, coin, iscorrupted, pdnaddr).

• A flag bAwin = 0 initialized.

2. Phase 1. A is given the oracles:

• OCreatePseudonym(): This captures that an adversary can observe other

particpiants’ pseudonym addresses.

OCreatePseudonym() runs (pdnaddr, pdnsk)← CreatePseudonum(PP),

adds (pdnaddr, pdnsk,False) into PdnL, and returns pdnaddr to A.

• OAddPseudonymAddr(·): This captures that an adversary can create a

pseudonym and publishes the pseudonym address.

OAddPseudonymAddr(pdnaddr) first checks if PdnL contains a tuple

pdnL such that pdnL.pdnaddr = pdnaddr. If such a pdnL exists, the

oracle returns ⊥ to A, implying this is a not valid query. Otherwise,

if PdnaddrLA does not contain pdnaddr, the oracle adds pdnaddr to

PdnaddrLA.

• OCoinbase(): This captures that an adversary can observe the coinbase

transactions created by other participants.

OCoinbase() first checks whether pdnL is empty or vtotal = vmax. If

PdnL is empty or vtotal = vmax, returns ⊥ to A, implying this is not

a valid query, since no pseudonym address could be used to receive

the coins or the total value of the existing coins have meet the upper

bound of the cryptocurrency. The oracle chooses random value such

that 0 < value ≤ vmax − vtotal and random tuple pdnL ∈ PdnL, runs

(outtxo,CbTx) ← Coinbase(PP, value, pdnL.pdnaddr), where CbTx =

(outtxo; ∗). Then the oracle runs cn← Receive(PP, pdnL.pdnaddr, pdnL.

pdnsk,CbTx,CbTx.outtxo) and adds tuple (CbTx.outtxo,False, cn, pdnL.

iscorrupted, pdnaddr) into TxoL. Note that here pdnL.iscorrupted is
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used to initialize whether the coin secret key has been corrupted by the

adversary, as if A has corrupted the corresponding pseudonym secret

key, he also knows all the coin secret keys derived from this pseudonym.

At last the oracle adds CbTx into L and sets vtotal = vtotal + value, and

gives L to A.

• OAddCbTx(·): This oracle captures that the adversary can produce a

coinbase transaction CbTx = (outtxo; ∗) and ask this oracle to add CbTx

to the ledger.

OAddCbTx(CbTx) runs b ← VerifyTransaction(PP,CbTx, L). If b = 0

or CbTx.outtxo.cnvalue+ vtotal > vmax, the oracle returns ⊥ to A, oth-

erwise, the oracle calls the subroutine Subroutine-ProceedOutTXO(·, ·)
in Alg. 1 with tx = CbTx and txo = CbTx.outtxo as input.

Algorithm 1 Subroutine-ProceedOutTXO(tx, txo)

Require: tx is a transaction, and txo is a TXO of tx.

1: Find a tuple pdnL in PdnL such that

cn← Receive(PP, pdnL.pdnaddr, pdnL.pdnsk, tx, txo) and cn 6= ⊥.

2: if Such a pdnL exists in PdnL then

3: Add (txo,False, cn, pdnL.iscorrupted, pdnL.pdnaddr) into TxoL.

4: else

5: Form a new coin cn by setting cn.addr = txo.cnaddr, cn.sk =

null, cn.value = txo.cnvalue, and add (txo,False, cn,True, null) into TxoL.

Note that only the adversary A knows the coin secret key for this coin

and only the adversary knows the pseudonym address for this txo, and if

txo.valuehidden = True, cn.value = txo.cnvalue = null, i.e. only the ad-

versary knows the coin value.

6: end if

The oracle adds CbTx into L and sets vtotal = vtotal+value, and returns

L to A.
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• OTransactPublic(): This oracle captures that an adversary can observe

the public transactions created by other participants, and also captures that

an adversary acts as receivers of the transaction output coins.

The oracle first interacts with the adversary to form the inputs for the

transaction:

(a) The oracle choose n random tuples from TxoL, say {txoL1, . . . , txoLn},
such that n ≥ 1 and txoLi.isconsumed = False AND txoLi.coin.sk 6=
null AND txoLi.txo.valuehidden = False (1 ≤ i ≤ n). Set intxo[i] =

txoLi.txo, csdcn[i] = txoLi.coin (1 ≤ i ≤ n). Let valuein =∑n
i=1 csdcn[i].value, the oracle chooses random valueout such that

0 < valueout < valuein, and gives valueout to A. 10

(b) The adversary specifies a set of (pseudonym address, value), say

out[], with size m0 > 1, such that for j = 1 to m0, out[j].pdnaddr =

pdnL.pdnaddr for some pdnL ∈ PdnL, or out[j].pdnaddr = pdnaddrLA

for some pdnaddrLA ∈ PdnaddrLA, 0 < out[j].value ≤ valueout,

and out[j].pdnaddr 6= out[j′].pdnaddr for 1 ≤ j 6= j′ ≤ n, and∑m0

j=1 out[j].value = valueout.

The oracle chooses a random tuple pdnLm ∈ PdnL and a random

value valuem such that 0 < valuem < valuein − valueout, adds

(pdnLm.pdnaddr, valuem) to out[], and sets m = m0 + 1. This is

used to receive the change.

The oracle randomly arranges the order of the elements in out[].

The oracle then runs (outtxo[],PubTx) ← TransactPub(PP, n, intxo[],

10From the view of practice, an attacker can observe the transactions, but cannot specify the

inputs of a transaction, unless he issues a transaction which case is captured by the later oracle

OAddPubTx(·). As an attacker may drive a transaction to transfer values to some particular

pseudonym address, below we allow the adversary to specify the output pseudonym addresses,

as well as the value for each pseudonym addresses. But here we do not allow the adversary to

specify the total output value, since the total output value are determined by two parties, the

sender and the receiver.
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csdcn[], m, out[]), where PubTx = (n, intxo[];m, outtxo[]; spf ; ∗), and

performs

(a) for i = 1 to n,

updates txoLi (in TxoL) by setting txoLi.isconsumed = True.

(b) for j = 1 to m, the oracle calls the Subroutine-ProceedOutTXO(·, ·)
in Alg. 1 with tx = PubTx and txo = PubTx.outtxo[j] as in-

put. Note that, for the TXOs in PubTx.outtxo[] which are received

by the pseudonym addresses in PdnaddrLA, although the oracle

knows the coin value and the pseudonym address, the Subroutine-

ProceedOutTXO sets the two values to null. This does not weaken

the adversary’s capacity or our security model.

At last, the oracle adds PubTx into L and returns L to A.

• OAddPubTx(·): This oracle captures that the adversary can produce a

public transaction PubTx and ask this oracle to add PubTx to the ledger.

OAddPubTx(PubTx) first runs b ← VerifyTransaction(PP,PubTx, L),

where PubTx = (n, intxo[]; m, outtxo[]; spf ; ∗). If b = 0, the oracle

returns ⊥ to A, otherwise

(a) For i = 1 to n: find a tuple txoLi ∈ TxoL such that txoLi.txo =

PubTx.intxo[i], if such a txoLi does not exist, set bAwin = 1, oth-

erwise

– if txoLi.coin.sk 6= null

∗ if txoLi.txo.valuehidden = False AND txoLi.iscorrupted =

True AND txoLi.isconsumed = False, set txoLi.isconsumed =

True.

∗ otherwise, set bAwin = 1.

– otherwise,

∗ if txoLi.txo.valuehidden = False AND txoLi.isconsumed =

False, set txoLi.isconsumed = True.
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∗ otherwise, set bAwin = 1.

(b) for j = 1 to m, the oracle calls the Subroutine-ProceedOutTXO(·, ·)
in Alg. 1 with tx = PubTx and txo = PubTx.outtxo[j] as input.

At last, the oracle adds PubTx into L and returns L to A.

• OMask(): This oracle captures that the adversary can observe the mask

transactions created by other participants.

The oracle first chooses the input parameters randomly:

(a) Choose a random tuple from TxoL, say intxoL, such that intxoL.txo.

valuehidden = False AND intxoL.isconsumed = False AND intxoL.

coin.sk 6= null. Set intxo = txoL.txo, csdcn = txoL.coin.

(b) Choose a random tuple from PdnL, say pdnL. Choose a random

value outvalue such that 0 < outvalue ≤ csdcn.value.

The oracle then runs (outtxo[],MsTx)← Mask(PP, intxo, csdcn, outvalue,

pdnL.pdnaddr), where MsTx = (intxo; outtxo, outvalue; spf ; ∗), and

(a) update txoL (in TxoL) by setting txoL.isconsumed = True.

(b) run cn← Receive(PP, pdnL.pdnaddr, pdnL.pdnsk,MsTx,MsTx.outtxo),

and adds (MsTx.outtxo,False, cn, pdnL.iscorrupted, pdnL.pdnaddr)

into TxoL.

At last, the oracle adds MsTx into L and returns L to A.

• OAddMsTx(·): This oracle captures that the adversary can produce a

mask transaction MsTx and ask this oracle to add MsTx to the ledger.

OAddMsTx(MsTx) first runs b← VerifyTransaction(PP,MsTx, L), where

MsTx = (intxo; outtxo, outvalue; spf ; ∗). If b = 0, the oracle returns ⊥
to A, otherwise

(a) the oracle finds a tuple txoL ∈ TxoL such that txoL.txo = MsTx.intxo,

if such a txoL does not exist, set bAwin = 1, otherwise

– if txoL.coin.sk 6= null
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∗ if txoL.txo.valuehidden = False AND txoL.iscorrupted =

True AND txoL.isconsumed = False, set txoL.isconsumed =

True.

∗ otherwise, set bAwin = 1.

– otherwise,

∗ if txoLi.txo.valuehidden = False AND txoLi.isconsumed =

False, set txoLi.isconsumed = True.

∗ otherwise, set bAwin = 1.

(b) the oracle calls the subroutine Subroutine-ProceedOutTXO(·, ·) in

Alg. 1 with tx = MsTx and txo = MsTx.outtxo as input.

At last, the oracle adds MsTx into L and returns L to A.

• OTransactPrivate(): This oracle captures that an adversary can observe

the private transactions created by other participants, and also captures

that an adversary acts as receivers of the transaction output coins.

The oracle first interacts with the adversary to form the inputs for the

transaction:

(a) The oracle choose n random tuples from TxoL, say {csdtxoL1, . . . ,

csdtxoLn}, such that n ≥ 1 and csdtxoLi.isconsumed = False AND

csdtxoLi.coin.sk 6= null AND csdtxoLi.txo.valuehidden = True,

(1 ≤ i ≤ n). Set intxo[i] = csdtxoLi.txo, csdcn[i] = csdtxoLi.coin

(1 ≤ i ≤ n). Let valuein =
∑n

i=1 csdcn[i].value, the oracle chooses

random valueout such that 0 < valueout < valuein, and gives valueout

to A.

(b) The adversary specifies a set of (pseudonym address, value), say

out[], with size m0 > 1, such that for j = 1 to m0, out[j].pdnaddr =

pdnL.pdnaddr for some pdnL ∈ PdnL, or out[j].pdnaddr = pdnaddrLA

for some pdnaddrLA ∈ PdnaddrLA, 0 < out[j].value ≤ valueout,

and out[j].pdnaddr 6= out[j′].pdnaddr for 1 ≤ j 6= j′ ≤ m0, and
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∑m0

j=1 out[j].value = valueout.

The oracle chooses a random tuple pdnLm ∈ PdnL and a random

value valuem such that 0 < valuem < valuein − valueout, adds

(pdnLm.pdnaddr, valuem) to out[], and sets m = m0 + 1. This is

used to receive the change.

The oracle sets valuefee = valuein − valueout − valuem.

The oracle randomly arranges the order of the elements in out[].

(c) The oracle chooses (t − 1) × n random tuples from TxoL, say

{txoLi}tni=n+1, such that t ≥ 1 and txoLi.txo.valuehidden = True,

(n + 1 ≤ i ≤ tn). Set intxo[i] = txoLi.txo (n + 1 ≤ i ≤ tn). Let

In1 = (intxo[1], . . . , intxo[n]), Ini = (intxo[(i−1)n+1], . . . , intxo[i×
n]) 2 ≤ i ≤ t, the oracle randomly arrange the order of In1, . . . , Int

in intxo[].

The adversary specifies the tracking option by setting trackable ∈ {True,False}.
The oracle then runs (outtxo[],PriTx)← TransactPrivate(PP, tn, n, intxo[],

csdcn[], m, out[], valuefee, [PKT ]), where PriTx = (tn, n, intxo[];m, outtxo[],

valuefee; spf, csdcnsn[]; trackable, tif ; ∗), and [PKT ] = PKT if trackable =

True. The oracle performs

(a) for i = 1 to n,

updates csdtxoLi (in TxoL) by setting csdtxoLi.isconsumed = True.

(b) for j = 1 to m, the oracle calls the Subroutine-ProceedOutTXO(·, ·)
in Alg. 1 with tx = PriTx and txo = PriTx.outtxo[j] as input.

At last, the oracle adds PriTx into L and returns L to A.

• OAddPriTx(·): This oracle captures that the adversary can produce a

private transaction PriTx and ask this oracle to add PriTx to the ledger.

OAddPriTx(PriTx) first runs b← VerifyTransaction(PP,PriTx, L), where

PriTx = (tn, n, intxo[]; m, outtxo[], valuefee; spf, csdcnsn[]; trackable, tif ; ∗).

If b = 0, the oracle returns ⊥ to A, otherwise,
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(a) for i = 1 to tn: find a tuple txoLi ∈ TxoL such that txoLi.txo =

PriTx.intxo[i], if such a txoLi.txo does not exist, set bAwin = 1,

otherwise

– If txoLi.coin.sk 6= null, compute sn = ComputeCoinSN(PP,

txoLi.coin.addr, txoLi.coin.sk).

∗ If sn ∈ PriTx.csdcnsn[],

· if txoLi.txo.valuehidden = TRUE AND txoLi.iscorrupted =

TRUE AND txoLi.isconsumed = False,

update txoLi.isconsumed = True in TxoL. Note that this

captures that one consumed coin is from the corrupted

ones.

· otherwise, set bAwin = 1.

∗ otherwise, do nothing.

– otherwise, do nothing.

(b) for j = 1 to m, the oracle calls the Subroutine-ProceedOutTXO(·, ·)
in Alg. 1 with tx = PriTx and txo = PriTx.outtxo[j] as input.

At last, the oracle adds PriTx into L and returns L to A.

• OUnmask(): This oracle captures that the adversary can observe the

unmask transactions created by other participants.

The oracle first chooses the input parameters randomly:

(a) Choose a random tuple from TxoL, say intxoL, such that intxoL.txo.

valuehidden = True AND intxoL.isconsumed = False AND intxoL.

coin.sk 6= null. Set intxo = txoL.txo, csdcn = txoL.coin.

(b) Choose a random tuple from PdnL, say pdnL. Choose a random

value outvalue such that 0 < outvalue ≤ csdcn.value.

The oracle then runs (outtxo,UmTx)← Unmask(PP, intxo, csdcn, outvalue,

pdnL.pdnaddr), where UmTx = (intxo, incnvalue; outtxo; spf, csdcnsn; ∗),
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incnvalue = csdcn.value, csdcnsn = ComputeCoinSN(PP, csdcn.addr,

csdcn.sk), and

(a) updates intxoL (in TxoL) by setting intxoL.isconsumed = True.

(b) runs cn← Receive(PP, pdnL.pdnaddr, pdnL.pdnsk,UmTx,UmTx.outtxo),

and adds (UmTx.outtxo,False, cn, pdnL.iscorrupted, pdnL.pdnaddr)

into TxoL.

At last, the oracle adds UmTx into L and returns L to A.

• OAddUmTx(·): This oracle captures that the adversary can produce a

unmask transaction UmTx and ask this oracle to add UmTx to the ledger.

OAddUmTx(UmTx) first runs b ← VerifyTransaction(PP,UmTx, L),

where UmTx = (intxo, incnvalue; outtxo; spf, csdcnsn; ∗). If b = 0,

the oracle returns ⊥ to A, otherwise,

(a) finds a tuple txoL ∈ TxoL such that txoL.txo = UmTx.intxo, if

such a txoL.txo does not exist, set bAwin = 1, otherwise

– If txoL.coin.sk 6= null, compute sn = ComputeCoinSN(PP,

txoL.coin.addr, txoLi.coin.sk).

∗ If sn = csdcnsn,

· if txoL.txo.valuehidden = TRUE AND txoL.iscorrupted =

TRUE AND txoL.isconsumed = False,

update txoL.isconsumed = True in TxoL.

· otherwise, set bAwin = 1.

∗ otherwise, set bAwin = 1.

– otherwise, do nothing.

(b) calls the subroutine Subroutine-ProceedOutTXO(·, ·) in Alg. 1 with

tx = UmTx and txo = UmTx.outtxo as input.

At last, the oracle adds UmTx into L and returns L to A.
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• OCorruptPseudonym(·): This oracle captures that an adversary may cor-

rupt other participants’ pseudonym secret keys, and as a result, all the

derived coin secret keys are compromised.

OCorruptPseudonym(pdnaddr) looks up PdnL and finds the tuple cor-

responding to pdnaddr, say (pdnaddr, pdnsk,False). If the tuple does

not exist, the oracle returns ⊥ to A, otherwise,

– The oracle updates the tuple to (pdnaddr, pdnsk,Ture) and returns

pdnsk to A;

– The oracle finds all the txoL ∈ TxoL such that txoL.pdnaddr =

pdnaddr AND txoL.coin.sk 6= null, updates txoL by setting

txoL.iscorrupted = True, and gives txoL.coin.sk to A.

• OCorruptCoin(·): This oracle captures that an adversary may corrupt the

coin secret key of a particular TXO.

OCorruptCoin(txo) looks up TxoL and finds the tuple corresponding

to txo, say txoL, if txoL.coin.sk 6= null, then sets txoL.iscorrupted =

True and returns txoL.coin.sk to A. If such a txoL does not exist or

txoL.coin.sk = null, the oracle returns ⊥ to A.

Remark: Giving the adversary the oracle OCorruptCoin(·) is to capture

the security requirement that the coin addresses derived from the same

pseudonym address should be independent from each other, and even

one of them is compromised, the others are still in safe. CryptoNote

and Monero did not achieve this security, since if a transaction sender

corrupts a coin for a pseudonym address (say pdnaddr) in a transaction,

then he can compute the value b, and as he also knows the random r

for other coin address he derived for the same pseudonym address, he

can compute the coin secret key H(rA) + b and can spend the coin.

3. Output Phase. At some time T , A declares the end of the game, and the

current ledger is LT . The algorithm 2 CheckLedger() is run. A succeeds if
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bAwin = 1, or rangerror = 1, or vT > vtotal. Note that bAwin = 1 captures the

adversary’s successful attacks that can be detected directly, while rangerror = 1

and vT > vtotal captures that without the adversary’s secret keys, we cannot

identity what attacks the adversary launched, but only if (as long as) it breaks

the range or total value rules, we know it launched some attack successfully.

A DAPOA scheme is secure if, for any PPT A, the success probability of A in the

above game is negligible.

Note that the TXOs received and controlled by adversary’s pseudonyms are

not used to compute the rangerror and vT . The thoughts behind this is that only

the values transferred to the pseudonyms that the adversary does not control are

‘effective’ values.

Note that the security definition also include resistance against a tracking au-

thority.

2.5 Fine-grained Privacy of DAPOA

DAPOA provisions fine-grained privacy, with three different levels:

• Basic Privacy: Coinbase, mask, unmask, and public transactions use one-

time coin address to hide the pseudonyms of the receivers, i.e. provides

pseudonym-anonymity, which is similar but stronger than the pseudonym-

anonymity of Bitcoin.

• Full Privacy: Private transaction generated without using the tracking

public key provides full privacy, where the consumed coins, the values of the

generated coins, and the pseudonyms of the coin receivers are completely

hidden.

• Full Privacy with Accountability: Private transactions generated with

the tracking public key provides full privacy against the participants who
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Algorithm 2 CheckLedger()

1: vT ← 0, rangerror ← 0

2: for each txoL ∈ TxoL do

3: if txoL.coin.sk 6= null AND txoL.isconsumed = False then

4: if txoL.coin.value < 0 OR txoL.coin.value > vmax then

5: rangerror ← 1

6: else

7: vT ← vT + txoL.coin.value

8: end if

9: end if

10: end for

11: for each transaction tx ∈ LT do

12: if tx is mask, unmask, public, or private transaction then

13: let feetx be the transaction fee of tx

14: vT ← vT + feetx

15: end if

16: end for

17: returns vT and rangerror
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do not know the tracking secret key, and basic privacy to the authority who

knows the tracking secret key.

Below we present the definitions for the basic privacy, full privacy, and full

privacy with accountability.

2.5.1 Pseudonym-anonymity

Definition 2 Given a secure11 DAPOA scheme (Setup,CreateTrackingKey,

CreatePseudonym,DeriveCoinAddress,VerifyCoinAddress,DeriveCoinSK,HideCoinValue,

OpenCoinValue,ComputeCoinSN,Coinbase,TransactPublic,Mask,Unmask,

TransactPrivate,VerifyTransaction,Receive,TrackTransaction,VerifyTrack), and a PPT

adversary A, consider the following game:

1. Setup. Same as that of Def. 1.

2. Phase 1. Same as that of Def. 1.

3. Challenge Phase. A outputs a transaction type TxType ∈ {Coinbase,Mask,

Unmask, Public, Private} and two different pseudonym address pdnaddr0,

pdnaddr1 such that there are corresponding tuples pdnL0, pdnL1 ∈ PdnL

such that pdnL0.iscorrupted = pdnL1.iscorrupted = False.

• if TxType = Coinbase: random bit b ∈ {0, 1} is chosen, OCoinbase()

is performed, where the pdnaddrb is used as the receiver pseudonym

address.

• if TxType = Mask: random bit b ∈ {0, 1} is chosen, OMask() is per-

formed, where the pdnaddrb is used as the receiver pseudonym address.

• if TxType = Unmask: random bit b ∈ {0, 1} is chosen, OUnmask()

is performed, where the pdnaddrb is used as the receiver pseudonym

address.

11Here we assume the DAPOA is secure as Def. 1.
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• if TxType = Public: random bit b ∈ {0, 1} is chosen, OTransactPublic()

is performed, where pdnaddrb is used as the pseudonym address for re-

ceiving the change.

• if TxType = Private: random bit b ∈ {0, 1} is chosen, OTransactPrivate()

is performed, where pdnaddrb is used as the pseudonym address for re-

ceiving the change.

4. Phase 2. Same as Phase 1, except that

• OCorruptPseudonym(·) cannot be queried on pdnaddr0 or pdnaddr1.

• OCorruptCoin(·) cannot be queried on the challenge Txo: 12

– if TxType = Coinbase: suppose the transaction is CbTx∗,

OCorruptCoin(·) cannot be queried on CbTx∗.outtxo.

– if TxType = Mask: suppose the transaction is MsTx∗,

OCorruptCoin(·) cannot be queried on MsTx∗.outtxo.

– if TxType = Unmask: suppose the transaction is UmTx∗,

OCorruptCoin(·) cannot be queried on UmTx∗.outtxo.

– if TxType = Public: suppose the transaction is PubTx∗,

OCorruptCoin(·) cannot be queried on PubTx∗.outtxo[j∗], where

PubTx∗.outtxo[j∗] is the TXO for receiving the change.

– if TxType = Private: suppose the transaction is PriTx∗,

OCorruptCoin(·) cannot be queried on PriTx∗.outtxo[j∗], where

PriTx∗.outtxo[j∗] is the TXO for receiving the change.

5. Output Phase. A outputs a bit b′ ∈ {0, 1}, and succeeds if b′ = b.

A DAPOA scheme achieves pseudonym-anonymity if, for any PPT A, the success

probability of A in the above game is negligibly close to 1/2.

12If we remove this restriction, the privacy is stronger, i.e. even given the coin secret key, the

adversary cannot tell which pseudonym address the coin public key is derived from.
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2.5.2 Value Hiding

Note that when an adversary corrupts the related coins of a target coin, he can

guess the value range of the target coin. The value-hiding definition below requires

that unless an adversary corrupts all the related coins, he cannot break the value-

hiding.

In the following security model, we model a private transaction, where the

adversary controls all the input and consumed TXOs. Let vin be the total value

of the consumed coins, the adversary specifies three values v0, v1, vfee. A random

bit b ∈ {0, 1} is chosen, and the private transaction has two output TXOs, one

with coin value vb and one with coin value vin − vb − vfee, and the target of the

adversary is to guess the value of b. Note that wlog. it is enough for the adversary

to learn information from one of the two output TXOs. The adversary is allowed

to make any queries to the oracles, except it cannot consume the target TXO, say

txo∗, to generate new coins that are all corrupted by the adversary, i.e., when the

adversary tries to consume the target TXO, it is required that at least one output

TXO is not corrupted by the adversary, and this new TXO becomes the target

TXO, since once the adversary can learn enough information from this new TXO,

he can track back and win the game trivially. In addition, as the values of v0 and

v1 are specified by the adversary, the adversary can learn range information by

issuing transactions to consume the target TXO, and win the game trivially. For

example, the adversary may specify v0 = 10, v1 = 100, then it makes a query to

produce a transaction which will contain an output TXO with coin value 90. If

the oracle returns ⊥, then the adversary can conclude that the target TXO has

coin value 10, i.e. b = 0, otherwise it can conclude that b = 1. The following game

captures this case.

Definition 3 Given a secure13 DAPOA scheme (Setup,CreateTrackingKey,

CreatePseudonym, DeriveCoinAddress,VerifyCoinAddress,DeriveCoinSK,HideCoinValue,

13Here we assume the DAPOA is secure as Def. 1.
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OpenCoinValue,ComputeCoinSN,Coinbase,TransactPublic,Mask,Unmask,

TransactPrivate,VerifyTransaction,Receive,TrackTransaction,VerifyTrack), and a PPT

adversary A, consider the following game:

1. Setup. Same as that of Def. 1.

2. Phase 1. Same as that of Def. 1.

3. Challenge Phase.

(a) A outputs a set of TXOs in current ledger L, say {txo[i]}ni=1, and the

corresponding coins, say {csdcn[i]}ni=1, such that for each txoi there is

a tuple txoLi ∈ TxoL, such that txoLi.txo.valuehidden = True and

sni = ComputeCoinSN(PP, csdcn[i].addr, csdcn[i].sk) does not appear

in any private transaction of L.

(b) A outputs three values v0, v1, vfee such that 0 < v0, v1, vfee < vmax and

v0 + vfee <
∑n

i=1 csdcn[i].value, v1 + vfee <
∑n

i=1 csdcn[i].value.

(c) A outputs two different pseudonym address pdnaddr1, pdnaddr2 such

that there are corresponding tuples pdnL1, pdnL2 ∈ PdnL such that

pdnL1.iscorrupted = pdnL2.iscorrupted = False.

(d) a random bit b ∈ {0, 1} is chosen, and OTransactPrivate() is per-

formed, where

i. t=1, i.e. l = n, and intxo[i] = txo[i] (i = 1, . . . , n) are the input

TXOs, {csdcn[i]}ni=1 are the input consumed coins.

ii. The out[] is set as (out[1].pdnaddr = pdnaddr1, out[1].value = vb),

(out[2].pdnaddr = pdnaddr2, out[2].value =
∑n

i=1 csdcn[i].value −
(vb + vfee)).

(e) Let txo∗1, txo
∗
2 be the two output TXOs of the private transaction of above

step. Wlog. assume txo∗1 is the one receiving value vb, and this infor-

mation is given to A.
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(f) Initialize incorruptible pseudonym address list as IcPdnAddrL = {pdnaddr1,
pdnaddr2}. Initialize incorruptible TXO list as IcTxoL = {txo∗1, txo∗2}.
Initialize the target TXO txo∗ to be txo∗1. Note that the target coin

value is v∗ = vb, initialize the range information of the target coin

value, namely v∗min = min(v0, v1), v
∗
max = max(v0, v1), so that v∗ satis-

fies v∗min ≤ v∗ ≤ v∗max.

4. Phase 2. Same as Phase 1, except that

• OCorruptPseudonym(·) cannot be queried on pdnaddr ∈ IcPdnAddrL,

• OCorruptCoin(·) cannot be queried on txo ∈ IcTxoL,

• OUnmask() does not choose txo ∈ IcTxoL as consumed TXO.

• OTransactprivate() does not choose txo ∈ IcTxoL as consumed TXO.

• If the adversary wants a private transaction to consume the txo∗, 14

(a) A outputs a set of TXOs in current ledger L, say {txo[i]}n0
i=1, and the

corresponding coins, say {csdcn[i]}n0
i=1, such that for each txoi there

is a tuple txoLi ∈ TxoL, such that txoLi.txo.valuehidden = True

and sni = ComputeCoinSN(PP, csdcn[i].addr, csdcn[i].sk) does not

appear in any private transaction of L. Let vA,in =
∑n0

i=1 csdcn[i].value.

(b) A outputs two values vA,out, vfee such that 0 < vA,out, vfee < vmax

and v∗max + vA,in − vmax ≤ vA,out + vfee < vA,in + v∗min. 15 As

shown below, the private transaction will consume the target TXO txo∗

(with value v∗) and the coins specified above by the adversary (with

total value A,in), and generates two TXOs, one received by pseudonym

address corrupted by the adversary (with value vA,out), one received by

14We did not consider the situation where the adversary asks a private transaction to spend

txo∗2, as it is similar, but just requires a somewhat complicated description.
15This is to ensure that the adversary cannot trivially win the game using the range requirement

of coin value.
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pseudonym address not-corrupted by the adversary (with value v∗ +

vA,in − vA,out − vfee), and the later will be the new target TXO.

(c) A outputs a pseudonym address pdnaddr∗ such that there is a cor-

responding tuple pdnL∗ such that pdnL∗.iscorrupted = False. A
outputs a different pseudonym address pdnaddrA.

(d) OTransactPrivate() is performed, where

i. t=1, l = n = n0 + 1, and {intxo[i] = txo[i]}n0
i=1 ∪{txo∗} are the

input TXOs, {csdcn[i]}n0
i=1 ∪ {csdcn∗} are the input consumed

coins, where csdcn∗ is the coin implied by txo∗.

ii. The out[] is set as (out[1].pdnaddr = pdnaddr∗, out[1].value =

v∗+vA,in−vA,out−vfee), (out[2].pdnaddr = pdnaddrA, out[2].value =

vA,out).

(e) Let txo1, txo2 be the two output TXOs of the private transaction of

above step, where txo1 is the one received through pdnaddr∗, and

this information is given to A.

(f) pdnaddr∗ is added into IcPdnAddrL. txo1 is added into IcTxoL.

txo∗ is set to txo1. Note that the value of the target TXO is v∗ =

v∗ + vA,in − vA,out − vfee, set v∗min = v∗min + vA,in − vA,out − vfee,

v∗max = v∗max + vA,in − vA,out − vfee.

5. Output Phase. A outputs a bit b′ ∈ {0, 1}, and succeeds if b′ = b, under

the restrictions that

• In Setup phase, the tracking secret key SKT is not given to A; or

• In Challenge Phase, the OTransactPrivate() oracle runs the Trans-

actPrivate algorithm with optional parameter tracking public key PKT =

null, and in Phase 2, when the adversary makes a query to consume

the txo∗, the OTransactPrivate() oracle runs the TransactPrivate algo-

rithm with optional parameter tracking public key PKT = null.
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A DAPOA scheme achieves value-hiding if, for any PPT A, the success probability

of A in the above game is negligibly close to 1/2.

2.5.3 Consumed-Coins-Hiding

Definition 4 Given a secure16 DAPOA scheme (Setup,CreateTrackingKey,

CreatePseudonym, DeriveCoinAddress,VerifyCoinAddress,DeriveCoinSK,HideCoinValue,

OpenCoinValue,ComputeCoinSN,Coinbase,TransactPublic,Mask,Unmask,

TransactPrivate,VerifyTransaction,Receive,TrackTransaction,VerifyTrack), and a PPT

adversary A, consider the following game:

1. Setup. Same as that of Def. 1.

2. Phase 1. Same as that of Def. 1.

3. Challenge Phase.

(a) A copy of TxoL is made, say TxoLCP . For each txoLCP ∈ TxoLCP ,

if txoLCP.iscorrupted = False, set txoLCP.coin.sk = null. TxoLCP

is given to A.

(b) A outputs two set of tuples selected from TxoLCP , say (txoLCP1, . . . ,

txoLCPn) and (txoLCPn+1, . . . , txoLCP2n), such that

txoLCPi.txo.valuehidden = True AND txoLCPi.iscorrupted = False AND

txoLCPi.coin.sk = null (i ∈ {1, . . . , n}) AND
∑n

i=1 txoLCPi.coin.value =∑2n
i=n+1 txoLCPi.coin.value.

(c) A outputs t×n tuples selected from TxoLCP , say txoLCP2n+1, txoLCP2n+2,

. . . , txoLCPn(t+2) such that txoLCPi.valehidden = True.

(d) a random bit b ∈ {0, 1} is chosen, and OTransactPrivate() is per-

formed, where

16Here we assume the DAPOA is secure as Def. 1.
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i. l = (t + 2)n. For i = 1 to (t + 2)n, let txoLi ∈ TxoL be the tu-

ple corresponding to txoLCPi, set intxo[i] = txoLi.txo, csdcn[i] =

txoLb×n+i.coin. Let intxo[] be the input TXOs, and csdcn[] be the

consumed coins.

4. Phase 2. Same as Phase 1, except that

• OCorruptPseudonym(·) cannot be queried on txoLi.pdnaddr (i ∈ {1,
. . . , 2n}),

• OCorruptCoin(·) cannot be queried on txoLi.txo (i ∈ {1, . . . , 2n}),

• OUnmask() does not choose txoLi.txo (i ∈ {1, . . . , 2n}) as consumed

TXO.

• OTransactprivate() does not choose txoLi.txo (i ∈ {1, . . . , 2n}) as con-

sumed TXO.

5. Output Phase. A outputs a bit b′ ∈ {0, 1}, and succeeds if b′ = b, under

the restrictions that

• the tracking secret key SKT is not given to A; or

• In Challenge Phase, the OTransactPrivate() oracle runs the Trans-

actPrivate algorithm with the optional parameter tracking public key

PKT = null.

A DAPOA scheme achieves consumed-coins-hiding if, for any PPT A, the success

probability of A in the above game is negligibly close to 1/2.

2.6 Accountability of DAPOA

First we define accountability which captures that no PPT adversary can produce

a valid private transaction that can escape from tracking, even if it corrupts the

tracking secret key.
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Definition 5 Given a secure17 DAPOA scheme (Setup,CreateTrackingKey,

CreatePseudonym, DeriveCoinAddress,VerifyCoinAddress,DeriveCoinSK,Coinbase,

TransactPublic,Mask, Unmask,TransactPrivate,VerifyTransaction,Receive,

TrackTransaction,VerifyTrack), and a PPT adversary A, consider the following

game:

1. Setup. Same as that of Def. 1.

2. Phase 1. Same as that of Def. 1.

3. Output Phase. At some time T , A declares the end of the game. Let the

current ledger is LT . A outputs a private transaction PriTx∗ ∈ LT . 18 A
succeeds, if

PriTx∗.trackable = True and

VerifyTrack(PP,PKT ,PriTx∗, LT ,TrackTransaction (PP,PriTx∗, LT , SKT )) = 0.

A DAPOA scheme is accountable if, for any PPT A, the success probability of A
in the above game is negligible.

Now we define the undeniable accountability which captures that no PPT ad-

versary can propose two different tracking results for a valid private transaction,

even if it corrupts the tracking secret key. This implies that if a tracking result is

verified to be valid, then it is undeniable.

Definition 6 Given a secure19 DAPOA scheme (Setup,CreateTrackingKey,

CreatePseudonym, DeriveCoinAddress,VerifyCoinAddress,DeriveCoinSK,HideCoinValue,

OpenCoinValue,ComputeCoinSN,Coinbase,TransactPublic,Mask,Unmask,

TransactPrivate,VerifyTransaction,Receive,TrackTransaction,VerifyTrack), and a PPT

adversary A, consider the following game:

1. Setup. Same as that of Def. 1.

17Here we assume the DAPOA is secure as Def. 1.
18Note that PriTx∗ ∈ LT implies VerifyTransaction (PP,PriTx∗, LT ) = 1.
19Here we assume the DAPOA is secure as Def. 1.
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2. Phase 1. Same as that of Def. 1.

3. Output Phase. At some time T , A declares the end of the game. Let

the current ledger is LT . A outputs a private transaction PriTx∗ ∈ LT

and two tuples (csdtxo1[], pubtxo1[]) 6= (csdtxo2[], pubtxo2[]). A succeeds,

if PriTx∗.trackable = True and VerifyTrack (PP,PKT ,PriTx∗, LT , csdtxoi[],

pubtxoi[]) = 1 (i = 1, 2). 20

A DAPOA scheme achieves undeniable accountability if, for any PPT A, the suc-

cess probability of A in the above game is negligible.

20Note that PriTx∗ ∈ LT implies VerifyTransaction (PP,PriTx∗, LT ) = 1.
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Figure 2: Abelian Cryptographic Freamework

3 Building Blocks

Based on previous retrospect, Abelian is a DAPOA system which (1) borrows

Monero’s ideas on privacy, (2) designs and implements the cryptographic primitives

using lattice-based cryptography.

3.1 Abelian Cryptographic Framework

As shown in Fig. 2,

• A Signature Scheme, denoted Πrhsig, whose (public key, secret key) pair can

be generated from a (pseudonym public key, pseudonym secret key) pair,

is used to achieve recipient hiding, i.e. cut the relation between the coin

address and pseudonym.
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• An additively Homomorphic Commitment Scheme, denoted by Πvhcm, is

used to achieve value hiding, due to the hiding and binding properties of

commitment scheme. In addition, when the message committed is zero,

the commitment and the witness forms a (public key pair, secret key pair)

of a signature scheme, denoted by Πvhcmsig, so that equality of consumed

coin value and the generated coin value can be proved. Also, a NIZK-Proof

scheme is used to provide range proof for the generated coin values, and the

NIZK-Proof should be built on the commitment scheme Πvhcm as well.

• A Linkable Ring Signature Scheme Πohlrsig is used to achieve origin hiding,

where the consumed coins are hidden in a larger set of coins. As Πrhsig is

used to authorize consuming a coin, Πohlrsig is built on Πrhsig. Also, autho-

rizing consuming coins, equality proof, and range proof should be achieved

simultaneously, the linkable ring signature scheme Πohlrsig also incorporates

Πvhcmsig.

• The signature schemes Πrhsig,Πvhcmsig and the linkable ring signature scheme

Πohlrsig have a built-in tracking mechanism, so that an auditor, given the

tracking secret key, can reveal the consumed coins and value of the generated

coins.

3.2 Lattice-based Cryptographic Building Blocks

The state-of-the-art privacy-preserving cryptosystems with post-quantum secu-

rity belong to two main classes. The first class relies entirely on symmetric-key

primitives. Protocols in this class demand zero-knowledge proofs for circuit-like

statements [40, 22, 2], leading to constructions such as ring signature [74] and

group signature [25] systems with increasingly improved efficiency [28, 17, 43].

Despite these recent advancements, this approach seems unsuitable to be used for

the development of Abelian. The main reason is that Abelian requires to work

with primitives possessing rich algebraic structures, such as signature schemes
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with key derivation and additively homomorphic commitments, while the existing

symmetric-key-based zero-knowledge protocols are not known to interact well with

algebraic statements 21.

The second class relies on lattice-based public-key primitives. Earlier lattice-

based zero-knowledge protocols, e.g., [57, 44, 52, 53], were quite impractical, but

the field has been rapidly developed, and some protocols [61, 27, 7] can already

be considered for practical use. These protocols naturally interact smoothly with

lattice-based statements: in fact, their newly obtained efficiency is thanks to the

algebraic structures of lattices and clever treatments of Lyubashevsky’s rejection-

sampling techniques [57, 58, 59].

Abelian is built on lattice-based cryptography. In the following, we

review the necessary ingredients for instantiating our system from lattices, and

discuss the known results, the remaining research problems and our approach to

address each of these problems.

3.2.1 Module-SIS and Module-LWE

Lattice-based cryptography relies on variants of the Short Integer Solution (SIS)

problem [1] and the Learning With Errors (LWE) problem [72]. The original,

unstructured variants of SIS and LWE provide very strong security guarantees

from general lattices [1, 72], but typically lead to systems with relatively large key

sizes. Their variants Ring-SIS [60, 71] and Ring-LWE [62], enable systems with

significantly smaller key sizes, but provide less security confidence [18] due to the

reliance on ideal lattices.

Many recently proposed systems [19, 31, 7, 27] instead rely on the Module-SIS

and Module-LWE problems [46] - variants of SIS and LWE that enjoy the best of

both worlds (i.e., high security guarantees and practicality).

21Chase et al. [23] proposed an interesting method to combine non-algebraic and algebraic

statements based on garbled circuits, but it is inherently interactive and thus unsuitable for the

design of signatures.
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Rings and norms. Let n, q be positive integers and denote by Zq the integers

modulo q, which will be represented between −
⌊
q−1
2

⌋
and

⌊
q+1
2

⌋
. Let R and Rq be

the rings Z[X]/(Xn + 1) and Zq[X]/(Xn + 1), respectively. For w = w0 + w1X +

. . . + wn−1X
n−1 ∈ R, define the infinity norm and the Euclidean norm of w as

follows:

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w0‖2∞ + . . .+ ‖wn−1‖2∞.

Similarly, for w = (w1, . . . , wk) ∈ Rk, define:

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w1‖2 + . . .+ ‖wk‖2.

Let Sη denote the set of all elements w ∈ R such that ‖w‖∞ ≤ η.

(Inhomogeneous) Module-SIS. The Inhomogeneous Module-SIS problem with

parameters (n, q, k, `, β) consists in finding x ∈ Rk+` such that ‖x‖ ≤ β and

[A | I] · x = t, for uniformly random A ∈ Rk×`
q , t ∈ Rk

q and k × k identity matrix

I. The problem can be adapted straightforwardly into its infinity-norm version,

where x must satisfy ‖x‖∞ ≤ β. The homogeneous version is defined with t = 0

and x 6= 0.

Module-LWE. The Module-LWE problem with parameters (n, q, k, `, η) is as

follows. Let A ∈ Rk×`
q be a uniformly random matrix. Let b = As+e ∈ Rk

q , where

s ∈ S`η, e ∈ Skη have entries chosen according to some distribution over Sη (e.g., the

uniform distribution or a Gaussian distribution). The search variant of Module-

LWE asks to recover s given (A,b). The decision variant asks to distinguish (A,b)

from a uniformly random pair over Rk×`
q ×Rk

q .

As shown in [46], the Module-SIS and Module-LWE problems enjoy worst-

case to average-case reductions from hard problems in module lattices. Concrete

parameters of these problems that provide high post-quantum security against the

best known attacks are given in Dilithium [31] and Kyber [19].

69



3.2.2 Lattice-based Signature with Key-Derivation

To support anonymous payments, we use a mechanism similar to that of CryptoNote,

at the heart of which is a key exchange protocol between the sender and the receiver

that allows the latter to derive a random-looking one-time key pair for a signature

scheme. Since a key exchange protocol can be obtained from a key encapsulation

scheme (KEM) in a modular manner, let us recall the definition of KEM.

A key encapsulation scheme KEM = (KeyGen,Encap,Decap) is a triple of

polynomial-time algorithms together with a key space K.

• The randomized key generation algorithm KeyGen outputs a key pair (pk, sk),

where pk is public key and sk is secret key.

• The randomized encapsulation algorithm Encap takes as input a public key

pk and outputs a ciphertext c and a key ρ ∈ K.

• The deterministic decapsulation algorithm Decap takes as input a secret key

sk and a ciphertext c, and outputs either a key ρ ∈ K or a symbol ⊥
indicating rejection.

For a concrete example, we consider Kyber [19], which is one of the most well stud-

ied lattice-based KEM schemes and also was included in the NIST post-quantum

cryptography project. As in [19, Section 5], Kyber allows Alice and Bob to agree

on a key ρ ∈ {0, 1}256 as follows.

1. Bob runs Kyber.KeyGen to generate (pk, sk), and sends pk to Alice.

2. Alice runs Kyber.Encap(pk) to obtain (c, ρ), and sends c to Bob.

3. Bob runs Kyber.Decap(sk, c) to obtain ρ.

The decapsulation algorithm of Kyber never returns ⊥. Instead, in case the algo-

rithm fails, it outputs a random element of the key space K = {0, 1}256. Accord-

ing to [19, Table 3], a Kyber variant achieving 161 bits of post-quantum security
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against best known attacks features sk size 2368 bytes, pk size 1088 bytes, and

ciphertext c of size 1184 bytes.

Deriving random-looking keys for lattice-based signatures. Fiat-Shamir-

with-abort, put forward by Lyubashevsky [58, 59], is a common approach to con-

struct a practical lattice-based signature scheme. For example, Dilithium [31],

which was included in the NIST post-quantum cryptography project, is one of the

most efficient schemes, thanks to various dedicated optimization techniques. The

basic ideas underlying the scheme are as follows.

The secret signing key is a pair (s1, s2) ∈ S`η × Skη , where η, `, k are small

positive integers and Sη is as defined earlier. The public verification key is vec-

tor t = As1 + s2 ∈ Rk
q , where A ∈ Rk×`

q is a publicly computable matrix. To

sign a message, the signer generates a proof of knowledge of a valid secret key,

which is made non-interactive via the Fiat-Shamir transformation. With ap-

propriate settings of parameters, the scheme is proven secure in the quantum

random oracle model assuming the hardness of the Module-SIS and Module-

LWE problems. For the recommended parameters given in [31, Table 1], where

(n, q, η, `, k) = (256, 8380417, 5, 4, 5), Dilithium features public key size 1472 bytes

and signature size 2700 bytes.

As in CryptoNote, we use a mechanism in which the sender can use the re-

ceiver’s long-term public key t0 to generate a random-looking public key t. It

is required that only the receiver can recognize that t is his one-time public key

and can compute the corresponding secret key (s1, s2). Such a mechanism can be

realized based on Kyber and Dilithium, as follows. Each potential receiver has two

key pairs:

• A Kyber key pair (pk, sk)← Kyber.KeyGen.

• A Dilithium key pair
(
t0, (s1,0, s2,0)

)
, where (s1,0, s2,0) ∈ S`η × Skη and t0 =

As1,0 + s2,0 ∈ Rk
q .

Then, a sender and a receiver proceed as follows.
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• The sender runs Kyber.Encap(pk) to obtain (c, ρ). Then she uses ρ ∈ {0, 1}256

as the random seed to deterministically generate (s1,1, s2,1) ∈ S`η×Skη (see [31]

for the implementation of this “extendable output function”), and computes

t1 = As1,1 + s2,1 ∈ Rk
q and t = t0 + t1 ∈ Rk

q . Next, she publishes (c, t).

• Given a transaction associated with (c, t), the receiver first runs the decap-

sulation algorithm Kyber.Decap(sk, c) to obtain a key ρ′ ∈ {0, 1}256, which

allows him to generate (s′1,1, s
′
2,1) ∈ S`η × Skη . Then he checks whether it

holds that t = t0 + As′1,1 + s′2,1. If this is the case, then he determines that

he is indeed the target receiver, and computes (s1, s2) ∈ S`2η × Sk2η, where

s1 = s1,0 + s′1,1 and s2 = s2,0 + s′2,1. Note that

t = As1,0 + s2,0 + As′1,1 + s′2,1 = As1 + s2.

The above mechanism allows the receiver to obtain a key pair
(
t, (s1, s2)

)
, for an

instance of Dilithium with parameters (n, q, 2η, `, k). This key pair later enables

the receiver to issue a Dilithium signature and spend the associated coins. We

stress that, for appropriate parameter settings, t1 = As1,1 + s2,1 is pseudorandom

over Rk
q (based on the hardness of the decision Module-LWE problem). It is

infeasible to learn t0 given (c, t). The security of the resulting signature scheme is

then based on those of Kyber and Dilithium.

The derived signature scheme is slightly less efficient than the original Dilithium.

That is because here we work with secret keys of infinity norm bounded by 2η in-

stead of η. As a consequence, we would have to slightly increase the scheme

parameters, which would lead to a small growth in public key size and signature

size.

3.2.3 Lattice-Based Additively Homomorphic Commitments

In the last decade, several additively homomorphic lattice-based commitment

schemes with companion zero-knowledge proofs have been proposed. For example,
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one of the most practical ones is by Baum et al. [7], and its variant by del Pino

et al. [27] in the context of lattice-based e-voting. Let us recall the commitment

scheme from [27], which is based on the hardness of Module-SIS and Module-LWE.

Let d be a positive integer, and Br a positive real bound. Define a com-

mitment scheme with key space R(d+1)×(2d+1)
q , message space Rq, opening space{

r ∈ R2d+1, ‖r‖ ≤ Br

}
. The scheme works as follows.

KeyGen The key generation algorithm performs the following steps.

• Choose uniformly random matrices A′ ∈ Rd×(d+1)
q and B ∈ R1×(2d+1)

q .

• Let A =
[
A′ | Id

]
∈ Rd×(2d+1)

q , where Id denotes the d × d identity

matrix.

• Output C =

 A

B

 ∈ R(d+1)×(2d+1)
q .

Commit To commit to message m ∈ Rq, proceed as follows.

• Sample Gaussian vector r ∈ R2d+1, satisfying ‖r‖ ≤ Br.

• Output Com(m, r) = C · r +

 0

m

 ∈ Rd+1
q .

Open To open c ∈ Rd+1
q given r ∈ R2d+1, performs the following steps.

• If ‖r‖ ≤ Br and there exists m′ ∈ Rq such that c − C · r =

 0

m′

,

then output m′.

• Else output ⊥.

According to [27, Theorem 3.1], the scheme above is computationally hiding under

the Module-LWE assumption and computationally binding under the Module-SIS
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assumption. Moreover, the scheme is additively homomorphic, i.e., the sum of

Com(m1, r1) and Com(m2, r2) is Com(m1 +m2, r1 + r2).

However, one cannot sum arbitrary number of commitments: as the sum of the

underlying randomness ri grows, breaking the binding property becomes easier.

To handle the situations where one has to sum a large number of commitments,

del Pino et al. suggested a “refreshing” technique: whenever the randomness

underlying the sum of commitments grows sufficiently large, one replaces it by a

fresh commitment to the same message (with small randomness) and proves in

zero-knowledge that the two commitments contain the same committed value.

In terms of efficiency, according to the parameters provided in [27, 7], a commit-

ment has size around 8 KB, and its companion zero-knowledge proof of knowledge

of a valid opening has size around 7.5 KB.

3.2.4 Lattice-Based Zero-Knowledge Range Proof

Another cryptographic primitive that we use in our Abelian construction is zero-

knowledge proofs. In particular, we choose to use zero-knowledge proofs where an

integer, which is committed via a lattice-based commitment scheme, belongs to

a given range. For example, the committed value m satisfies m ∈ [0, 2t − 1], for

some positive integer t. Below are two main zero-knowledge techniques which can

achieve this requirement.

• Introduced by Ling et al. [52], which operates in the framework of Stern’s

protocol [80], this technique is expressive (it is applicable to all known lattice-

based commitment schemes). It, however, yields proofs with large sizes be-

cause in each protocol execution, it admits some soundness error, and there-

fore, multiple repetitions are required in order to make the soundness error

negligible. For example, [51] has a proof size of over 2 MB for a committed

integer in the range of [0, 264 − 1].

• Another technique, initiated by Lyubashevsky [57, 59], employs the Fiat-
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Shamir-with-abort approach. This technique is less expressive while it yields

more practical sizes in proofs.

Based on Lyubashevsky’s technique, del Pino et al. [27] proposed some OR-proofs

for their commitment scheme. Their OR-proofs efficiently prove that a committed

value (when viewed as an integer) is either 0 or 1, with proof size less than 15KB.

This gives us a method to show in the context of privacy-preserving cryptocurrency

that a commitment contains either 0 coin or 1 coin.

A method to prove that a committed integer m belongs to the range [0, 2t− 1]

consists of reducing the given task to constructing t OR-proofs for committed

values in {0, 1}. If m ∈ [0, 2t − 1], we can write m as:

m = m0 + 21 ·m1 + . . .+ 2t−1 ·mt−1,

where mi ∈ {0, 1}, for all i ∈ [0, t−1]. Instead of committing to integer m directly

(which is impractical in the lattice setting because it requires extremely large

modulus q), we commit to its binary representation (m0, . . . ,mt−1) ∈ {0, 1}64.
Note that this method was also suggested in [27, Appendix B]. They showed that

their proposed commitment scheme can be adapted straightforwardly to handle

message space Rt
q, and then an amortized proof that a committed message belongs

to {0, 1}t can be done via t parallel atomic proofs. This approach produces a proof

size to be less than 1 MB for t = 64. We remark that, in practice, one may mainly

deal with much smaller number of coins, e.g., t < 25. In these cases, we would

only require proof size of a few hundred KBs.

3.2.5 Lattice-Based Linkable Ring Signature

A linkable ring signature scheme can be constructed from an ordinary ring sig-

nature scheme in a modular manner, by letting the signer output a deterministic

function of his secret signing key22.

22This function is called key image in CryptoNote. A similar function serves as the serial

number in Zerocash [9].
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In [50], Libert et al. suggested a blueprint for constructing post-quantum ring

signatures based on Merkle hash trees supported by zero-knowledge proofs of a

hash chain. They instantiated this framework and proposed the first lattice-based

scheme with short secret key and with signature size logarithmic in the cardinality

of the underlying ring. Yang et al. [85] then extended the construction to a linkable

ring signature. Several other post-quantum ring signature schemes [28, 17] have

been proposed based on the blueprint from [50]. However, existing constructions

following this approach have not been sufficiently efficient for practical use, due to

the current lack of truly practical zero-knowledge proofs for statements related to

Merkle hash trees.

Another approach employs Lyubashevsky’s techniques [59]. Baum et al. [8]

proposed one with security relies on the Module-SIS and Module-LWE assump-

tions, but the scheme is not scalable. It produces signatures with size linear to

the cardinality of the underlying ring. For example, a signature is 82.5KB in size

for a ring of 8 signers, while it grows to 1.17MB for a ring with 128 users. Torres

et al. [82] proposed a scheme based on the Ring-SIS assumption. Similarly, the

scheme is not scalable enough.

Our design can be considered as the mixture of Libert et al.’s blueprint and

Lyubashevsky’s zero-knowledge techniques.

3.2.6 Lattice-Based Verifiable Encryption

To enable the optional accountability feature, we choose to deploy an efficient

lattice-based verifiable encryption scheme. If a transaction is supposed to be

tracked by an authority, the user will be constrained from encrypting some cru-

cial information (e.g., the values of consumed coins, the identifying information of

sender/receiver) under the authority’s public key, and to prove in zero-knowledge

that he honestly does so. Should a need arises, the authority can use his secret de-

cryption key to recover the encrypted information. To this end, a lattice-based en-

cryption system supported by zero-knowledge proof of ciphertext well-formedness,
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i.e., a verifiable encryption system, is needed.

The first lattice-based verifiable encryption systems were proposed by Ling et

al. [53], with respect to Gentry et al.’s LWE-based scheme [38] and the LPR Ring-

LWE-based scheme [62]. Their techniques were further employed in subsequent

lattice-based constructions [50, 48, 47, 49, 54]. These techniques, however, have

not yielded practical systems, since the sizes of the underlying proofs are more

than 5 MB.

A practical lattice-based verifiable encryption system was introduced by Lyuba-

shevsky and Neven [61], that produces proof size and ciphertext size as small as

9KB (for 128-bit post-quantum security). Due to technical reasons, in its basic

version, their system requires the authority to carry out a considerably large num-

ber of decryption attempts - which may be undesirable in practice. Fortunately, as

the authors pointed out, the number of decryption attempts can be significantly

reduced thanks to an elegant idea that works smoothly in the random oracle model.

Their system was subsequently employed by Boschini et al. [20] to construct the

most practical lattice-based group signature scheme known to date.

77



4 Abelian Data Structures and Rules

This section gives an overview to Abelian’s data structures and rules on transac-

tion, block, and blockchain.

Abelian is a cryptocurrency system based on transaction-based ledger, where

ledger L consists of a series of transactions. Each transaction generates one or

multiple transaction-output(TXO)s, and after a transaction is verified and added

into ledger L, each TXO of the transaction represents a coin of the cryptocurrency,

with the coin-owner and coin-value specified in the TXO. On the input side of a

transaction, there are two cases and the transaction is categorized into two types:

coinbase transaction and transfer transaction.

A transfer transaction consumes some existing coins (i.e. the TXOs of some

previous transactions in L) and transfers the value of the consumed coins to the

new coins generated by it (i.e. its TXOs). Note that each TXO can be consumed

only once by some transaction, as its value is transferred into other new TXOs

once it is consumed, and an attempt to consume a TXO multiple times, referred to

as double spending, is regarded as an attack that a secure cryptocurrency system

should defend against. Also, for a transfer transaction, the total value of the

generated TXOs must not exceed that of the consumed TXOs, and an attempt to

violate this is referred to as over spending. A transfer transaction is valid if and

only if it is non-double-spending, non-over-spending, and is well authorized and

authenticated by the owner(s) of the consumed TXOs.

A coinbase transaction, in contrast to a transfer transaction, does not consume

any existing TXOs. In other words, a coinbase transaction ‘creates’ coins (its

TXOs) and the corresponding value from thin air. The total value of the created

coins of a coinbase transaction and the validity criterion are determined by the

design of the cryptocurrency.

As a privacy-preserving cryptocurrency, Abelian aims at hiding the source, the

destination, and the amount of transactions. Except the payer and payee of a
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Figure 3: Data Structures of Transactions.

TXO/coin, no one should be able to identify the recipient (i.e. the coin-owner)

or the coin-value of the TXO. On the input side, each consumed TXO (in transfer

transactions) is hidden in a set of TXOs, so that except the payer (i.e. the owner

of that consumed TXO), no one can identify the consumed TXO from the set of

TXOs. Fig. 3 shows the outline of the data structures of transactions.

4.1 System Parameters

Below are the system parameters of Abelian:

• Let V be the total supply of coins. As of this writing, V is set to 251 − 1,

which means the total supply is 251 − 1 Neutrinos, where Neutrino is the

minimum unit in Abelian, and 1 Neutrino = 10−7 ABEL, where ABEL is

the currency unit in Abelian.

• Jmax specifies the maximum number of generated TXOs in a transfer or

coinbase transaction. At this moment, Jmax is set to 5.
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• Imax specifies the maximum number of consumed TXOs in a transfer trans-

action. At this moment Imax = 5.

Remark: Special attention has to be put on if Imax and Jmax are to be changed,

since this will cause the change of the parameters of underlying cryptographic

schemes.

4.2 Transaction Data Structures

4.2.1 TXO

Master Key and Derived Public Key. Each user generates at least one mas-

ter key pair (mpk,msk). The master public key mpk is published and enables others

to directly transfer to the user. For each transfer to mpk, the payer derives a fresh

derived public key dpk from mpk, and uses dpk to specify the owner of TXO.

The master secret key msk will be used to receive payments sent to mpk and spend

them later. The underlying cryptographic scheme of Abelian ensures that each

honestly generated derived public key is fresh, which means each derived public

key is unique. This is the foundation that Abelian can achieve one-coin-per-address

and subsequently hide the coin-owners.

Value and Commitment. Each coin value v is an integer in [0, V ]. A payer

(actually anyone) can generate a commitment cmt for value v.

Transaction Output. TXO is a composite object consisting of derived pubic key

and commitment. In particular, each TXO is a (derived public key, commitment,

value’s ciphertext) tuple txo := (dpk, cmt, vc), where dpk acts as the coin-address to

specify the owner of the coin represented by this TXO, cmt commits (i.e. specifies

but hides) the coin-value, and vc is an encryption of the value so that only the

owner (i.e. the owner of the master public key from which the derived public

key was derived) can obtain the value, in a non-interactive way. From now on,
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if a TXO txo’s derived public key dpk is derived from a master public key mpk,

for simplicity, we say “ txo belongs to mpk”, which means that txo belongs to the

owner of mpk.

Remark: With such a data structure, intuitively, for each coin/TXO, the owner

(i.e., the master public key and its owner) is hidden, and the value is hidden.

4.2.2 Coinbase Transaction

A coinbase-transaction is a composite object built on TXOs, which does not con-

sume any TXO but generates new TXOs from thin air. In particular, a coinbase-

transaction is a (transaction content, balance proof) pair

cbTx := (cbTxCon, bpf) with cbTxCon := (vin, {txoout,j}Jj=1) where

• vin ∈ [0, V ] is the total value of the new TXOs generated by cbTx, say

txoout,1, . . . , txoout,J .

• bpf is a proof for the balance, proving that the total value of the generated

TXOs is equal to vin.

4.2.3 Transfer Transaction

A transfer-transaction is a composite object built on TXOs, which consumes exist-

ing TXOs and generates new TXOs, transferring the value in the consumed (old)

TXOs to the generated (new) TXOs. In particular, a transfer-transaction is a

(transaction content, authorization/authentication and balance proof) pair

trTx := (trTxCon, abpf) with trTxCon := ({(inTxoLi, sni)}Ii=1, {txoout,j}Jj=1, fee)

where

• (inTxoL1, sn1), . . . , (inTxoLI , snI) specify the I consumed TXOs. In particular,

each inTxoLi specifies a list (ordered set) of existing TXOs of previous trans-

actions 23 and the corresponding serial number sni specifies the consumed

23Each existing TXO can be specified by a (transaction hash, output index) pair. Later, when

introducing the data structures of block and blockchain, more details will be given.
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TXO in inTxoLi in a privacy-preserving manner. In other words, for each

i ∈ I, (inTxoLi, sni) implies that “one TXO in inTxoLi (with serial number

sni)” is consumed by trTX.

• txoout,1, . . . , txoout,J are the new TXOs generated by trTX.

• fee ∈ [0, V ] is the transaction fee, i.e., the difference between the total value

of the generated TXOs and that of the consumed ones 24.

• abpf includes (1) the authorization and authentication proof for trTx, autho-

rizing the spending of the consumed TXOs (specified by {sni}ni=1) and au-

thenticating the transaction content trTxCon, which says that values in the

consumed TXOs are transferred to the generated (new) TXOs {txoout,j}Jj=1

and the transaction fee fee; and (2) the balance proof for trTx, proving that

the total value of the consumed TXOs is equal to that of the generated TXOs

and the transaction fee.

Remark : The serial number serves as TXO’s secret unique identifier, namely, (1)

each TXO has a unique serial number (corresponding to its unique derived public

key) and the revealed serial numbers will be used to detect double-spending; and

(2) only the owner of a TXO (i.e. the owner of the master public key from which

the TXO’s derived public key is generated) can compute/reveal the TXO’s serial

number; and (3) no one except the owner can link a revealed serial number to

corresponding TXO, i.e. the revealed serial numbers do not leak the corresponding

TXOs.

4.3 Data Structures of Blocks and the Blockchain

In Abelian, transactions are organized into blocks, and the ledger is a (hash) chain

of blocks, as shown in Fig. 4.

24As the transferred values are hidden, the transaction fee has to be given explicitly.
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• Each block consists of an ordered set of transactions, including one coinbase

transaction and zero or multiple transfer transactions.

• Besides transactions, each block contains a block head, which has four fields

(previousblockhash, merkletreeroot, difficulty, nonce):

– PreviousBlockHash: The field PreviousBlockHash stores the hash of its

previous block, which is computed by hashing the block head of its

previous block.

– MerkleTreeRootHash: A Merkle Tree is built on the transactions in

the block, and the hash of the Merkle Tree Root is stored in the field

MerkleTreeRootHash.

– Difficulty : The system parameter Difficulty is used to control the block

generation rate (e.g. one block per 512 seconds on average) and will be

adjusted for every 2000 blocks.

– Nonce: The field Nonce does not have any business means, and just

makes the hash of the block fall into a valid scope specified by Difficulty.

Remark : The blocks do not store the balance proof for any coinbase transaction

or the authorization/authentication and balance proof for transfer transaction,

and store only the transaction content, say cbTxCon := (vin, {txoout,j}Jj=1) for

coinbase transaction and trTxCon := ({(inTxoLi, sni)}Ii=1, {txoout,j}Jj=1, fee) for

transfer transaction. The Merkle tree is based on the content of the transactions.

As each block’s hash value, say H(PreviousBlockHash, MerkleTreeRootHash,

Difficulty, Nonce) 25 can be and actually is used as the unique identifier of the

block, with the PreviousBlockHash field, the blocks are chained together and

form a blockchain. For a transaction, only after it is contained in some block and

the block is chained in the blockchain, it is accepted as a part of the ledger of the

system.

25Below, we use H as a secure cryptographic hash function.
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Figure 4: Data Structures of Blocks and Blockchain.

Below, we use tx ∈ B to denote that a transaction tx is contained in a block

B, and use B ∈ L to denote that a block B is chained in a blockchain L.

4.4 Rules on Transactions, Blocks, and the Blockchain

We first introduce the roles in the Abelian system and then describe the rules of

the system, i.e., how the system runs and what rules data should obey.

4.4.1 Roles

A participant may play as a user and/or a miner, where user is used to describe

participants who own coins and create transactions to consume and generate coins,

while miner is used to describe participants who build and propose valid blocks

to store transactions into the ledger (i.e. form the blockchain).

User. Each user can generate one or multiple master key pairs. For each master

key pair, say (mpk,msk := (msvk,mssk)), the owner can publish the master public

key mpk and his identity, so that anyone can transfer coins to him by using his

master public key. On the other side, for each coin (i.e. a TXO) in the ledger, say

txo := (dpk, cmt, vc), a user needs to use a part of his master secret key, say msvk,
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referred to as master secret view key, to check whether the coin belongs to him,

and if it does, the user will recover the coin-value (also by using msvk) and add

the coin to his wallet. And for each coin in his wallet, the user can use his master

secret key, msk := (msvk,mssk) where mssk is referred to as master secret spend

key, to create a transaction consuming the coin. Neither the coin/TXO itself nor

the transaction consuming the coin leaks the corresponding master public key (i.e.

the coin-owner) or the coin-value.

Miner. The generation of block in Abelian is similar to that of Bitcoin. More

specifically, a miner collects transfer transactions issued by users, mine to find

valid blocks, propose valid blocks, verify received blocks, and maintain its local

blockchain. As of this writing, Abelian uses Bitcoin-like PoW-based (Proof-of-

Work-based) consensus protocol.

4.4.2 Rules

Genesis Block. There is an initial block, referred to as the genesis block, being

hardcoded in Abelian source code so that all participants share the same genesis

block through running the source code.

• Genesis block’s PreviousBlockHash is set to all-zero, implying that it is the

first block of the blockchain and does not have a previous block.

• Genesis block contains only one coinbase transaction, CbTx := (CbTxCon,

bpf) with CbTxCon = (vin, txo), where vin is set according to the token release

schedule and txo and bpf are generated using a standalone subroutine outside

the system source code. Genesis block’s MerkleTreeRootHash is computed

based on the transaction list, which contains only this coinbase transaction.

• Genesis block’s Difficulty is set according to the expected/evaluated initial

computation power of the system, such that one block is released per 512

seconds on average.
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• Genesis block’s Nonce is computed using a standalone subroutine outside

the system source code, so that the hash of the genesis block falls in the

target scope specified by Difficulty.

Note that while the coinbase transaction and the nonce are generated/computed

by standalone subroutines outside the system source code, any participant can run

the code to verify the validity of the block, including the validity of the coinbase

transaction (the coin-value of txo equals vin) and that the hash of the block falls

in the target scope. Abelian source codes are public and open source, will always

be the case.

Rule 1: The Block Height of the genesis block is 0. Each block has a

block height one greater than its previous block.

For simplicity, when we say a blockchain has height h, we mean the height of

the latest block in the blockchain is h.

4.4.3 Maturity of Coins in Coinbase Transaction

At the very beginning, the coins in the system are only the coins generated by the

coinbase transaction in the genesis block, and the owner of these coins may want

to spend them. However, the coins cannot be spent until they become mature.

Rule 2: For a coin generated by the coinbase transaction in a block

with height h, say Bh, it is regarded as being mature with respect to

a blockchain L if and only if Bh ∈ L and L has height at least h +

maturitysys, where maturitysys is a system parameter. On the other side,

for a blockchain L, it would not accept any transaction consuming

immature coins.

Currently, maturitysys is set to 99. This means before the block height reaches

99, there is not transfer transaction in the system. This also means that for the

first 100 blocks, each block can have one coinbase transaction only.
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4.4.4 Block Generation: Mining

Initially, all miners in the system set up their local ledgers with one block, the

genesis block. From the view of a miner, the miner mines based on its local

blockchain and its local memory pool, which stores received transfer transactions

that have not been included in any block in its local blockchain. Here we suppose

that the transfer transactions in the memory pool are valid, while referring the

validity check of transfer transactions to Sec. 4.4.8. A miner performs the mining

as follows:

1. Initialize a new block B.

2. Set B.PreviousBlockHash to be the hash of the latest block of its local

blockchain.

3. Set B.Difficulty according to difficulty setting rules.

4. Choose transfer transactions (from memory pool) that will be contained in B,

and compute the total transaction fee of the selected transactions. Note that

the set of selected transfer transactions could be empty, and is determined

by the miner’s local policy.

5. Generate coinbase transaction:

• Compute vin, by summing up the total transaction fee and the current

block reward.

• Set the (master public key, coin-value) pair(s) that will be used to

generate TXO(s) for the coinbase transaction.

• Generate coinbase transaction CbTx by calling the Coinbase Transac-

tion Generation subroutine of the underlying cryptographic scheme, on

input vin and the (master public key, coin-value) pair(s).

6. Build Merkle tree on the generated coinbase transaction and selected transfer

transactions, and set the value for B.MerkleTreeRootHash.
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7. Find Nonce such that

H(B.PreviousBlockHash, B.MerkleTreeRootHash, B.Difficulty, Nonce)

falls into the target scope determined by B.Difficulty, then set B.Nonce and

broadcast the block B to the Abelian network.

4.4.5 The Validity Rule of Block

When a block is received from other miners, a miner needs to check the validity

the block.

Rule 3: A block is valid if and only if

• The block’s PreviousBlockHash is the hash of some block in local

memory or local blockchain, so that the height of the received

block is determined.

• The block’s Difficulty satisfies the difficulty rule.

• The hash value of the block falls in the scope specified by the

difficulty.

• All transfer transactions in the block are valid (Sec. 4.4.8).

• The coinbase transaction is the first transaction in the block’s

transaction list.

• The vin of the coinbase transaction is the sum of the total trans-

action fee and the block reward.

• The coinbase transaction’s bpf is valid.

• The block’s MerkleTreeRootHash is valid with respect to the block’s

transaction list.
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4.4.6 The Rule of TXO Ring

As mentioned, for a transfer transaction in Abelian, each consumed coin/TXO is

hidden in a set of TXOs. To resist some privacy-analyzing attacks, as well as to

improve efficiency, Abelian adopts the fixed-ring policy, where the TXO rings are

formed by system protocol/rules.

Before describing the rule, we would like to highlight that for each TXO in

Abelian, it is uniquely identified by a (TxHash, index) pair, where TxHash is the

hash of the transaction which generates this TXO and index is the position of this

TXO among all the TXOs generated by the transaction.

Rule 4: Coins/TXOs are divided into rings as below:

• Starting from the genesis block, each three successive blocks form

a block group. For any i = 0, 1, 2, . . . , blocks with height 3i, 3i+1, 3i+

2 form a block group.

• For each block group, all TXOs generated by the coinbase transac-

tions form a TXO group, referred to as Coinbase-TXO group, and

all the TXOs generated by the transfer transactions form a TXO

group, referred to as Transfer-TXO group. Suppose the hash of

the three blocks are hash0, hash1, and hash2, respectively,

– for each TXO, a hash value TxoHash = H(hash0, hash1, hash2,

BlockHash, TxHash, index) is computed, where BlockHash is the

hash of the block that contains the transaction generating this

TXO, TxHash is the hash of the transaction generating this

TXO, and index is the position of this TXO among all the TXOs

generated by the transaction.

– All the TXOs in Coinbase-TXO group (resp. Transfer-TXO

group) are ordered by their TxoHash, they are divided into

(ordered) lists with size RingSizesys, and each list is referred

89



to as a ring. If the last list has size smaller than RingSizesys

and if there is a ring before it, the TXOs in the last two lists

will be put together and divided into two rings with almost the

same size. Accordingly, the ring is referred to as Coinbase-

TXO Ring (resp. Transfer-TXO Ring). For example, we

may set RingSizesys = 7.

• For each TXO ring, the Ring Height is defined as the largest

height of the corresponding block group. Suppose the height of

the three blocks is 3i, 3i+ 1, 3i+ 2, all the rings generated from this

block group have ring height 3i+ 2.

The rule above is described in a static manner. In fact, in the system, starting

from the genesis block, when a new block with height h is appended into the

blockchain, if h%3 = 2, then the previous two successive blocks and this new

block will form a new block group, and a set of new TXO rings will be generated.

On the other side, when a user wants to spend a coin/TXO, he actually spends

a member TXO of a ring. The following rule defines the maturity of TXO ring.

Rule 5: For a Coinbase-TXO Ring with ring height 3i + 2, it becomes

mature with respect to a blockchain when the blockchain contains a

block with height 3i + 2 + maturitysys. For a Transfer-TXO Ring, it be-

comes mature immediately.

From the view of a user, he can spend a coin successfully only after the ring

containing the coin becomes mature. For example, suppose a user owns a coin

generated by a transfer transaction contained in a block with height 3i for some i,

then only after blocks with height 3i+1 and 3i+2 are appended into the blockchain

and the rings of this block group are generated, the user can spend this coin.
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4.4.7 Transfer Transaction Generation

From the view of a user, his wallet needs to fetch complete blocks of the blockchain

to its local memory.Suppose that a TXO/coin txo belongs to a wallet, the wallet

needs to fetch the other two complete blocks of the block group, so that the wallet

can run the above TXO ring generation procedure and get the ring containing txo.

When a user wants to spend some of his coins by a transfer transaction,

• on the input side, for each coin to be consumed, the user/wallet needs to

provide the corresponding master secret key, the corresponding TXO ring

and the index of the coin in the ring, and the coin-value;

• on the output side, for each target recipient (including the change for the

user himself), the wallet needs to specify a (master public key, coin-value)

pair, which will be used to generate the corresponding TXO,

• and the wallet needs to specify the transaction fee, so that the total value

of the consumed coins equals the total value of the generated coins and the

transaction fee.

The wallet will then call the Transfer Transaction Generation subroutine of the un-

derlying cryptographic scheme and obtain a transfer transaction TrTx =
(
TrTxCon,

abpf
)

with TrTxCon =
(
{txoRingi, sni}Ii=1, {txoj}Jj=1, fee

)
, and broadcast TrTx to

the Abelian network.

The transaction content TrTxCon implies that this transaction consumes I coins

and generates J new coins, and the transaction fee is fee. As to the consumed coins,

TrTxCon implies that for each i ∈ [1, I], a coin in ring txoRingi is consumed and

the consumed coin’s serial number is sni.

The underlying cryptographic scheme ensures that, (1) for a TXO txo :=

(dpk, cmt, vc), only the owner with the corresponding master secret key can gen-

erate the corresponding serial number sn and (2) each TXO (with unique dpk) has

a unique serial number. This implies that the public cannot identify the actual
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consumed TXO from the TXO ring, and the coin-owners cannot double-spend their

coins.

Due to the hiding of the consumed coins, a user’s wallet may run the Serial-

Number Generation subroutine of the underlying cryptographic scheme to generate

the serial numbers for his coins in the wallet, so that the wallet can exactly know

which coins have been spent and which are still spendable. This is to deal with the

situation that a user runs two wallets with the same master key pair on different

devices.

Note that in a transfer transaction, each txoRing is a set of pointers referencing

to a set of existing TXOs, rather than a set of TXOs as described in Sec. 4.3.

More specifically, each txoRing contains 3 hash values for the 3 blocks in the

corresponding block group and there are at most RingSizesys (TxHash, index)

pairs.

4.4.8 The Validity Rule of Transfer Transaction

As described, a user can create a transfer transaction and broadcast the transaction

to Abelian network. However, only after a transaction is included in some block

and the block is appended into a blockchain, the transaction would be accepted

as a part of the cryptocurrency’s ledger. While we have described how a miner

selects transfer transactions from his local memory pool and mines new block in

Sec. 4.4.4, below we describe how a miner checks the validity of a received transfer

transaction and put it into its local memory pool.

Before describing the validity rule of transfer transaction, we need to first

describe how a miner maintains Unspent TXO Ring set, which is similar to the

UTXO set in bitcoin, storing the (possible) spendable TXOs. In particular, the

UTXORing Set Sutxor is defined such that each element in the set will be a (TXO

Ring, SerialNumber Set) pair (txoRing, snSet), and will be maintained with the

rule below.

Rule 6: The UTXORing set is maintained as follows:
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1. Starting from the genesis block, the UTXORing Set Sutxor is empty.

2. When a new block with height h is appended to the blockchain,

(a) for each transfer transaction (content) in this new block, say

TrTxCon =
(
{txoRingi, sni}Ii=1, {txoj}Jj=1, fee

)
,

i. for each txoRingi, find the corresponding pair in Sutxor, say

(txoRing, snSet), then add sni into snSet

26. If |snSet| = |txoRing|, remove this pair from Sutxor, since

the equation implies that all TXOs in txoRing have been

spent.

(b) If h%3 = 2,

• take the previous two blocks and this new block to form

a block group, and generate a set of new TXO Rings as

described in Rule 4 in Sec. 4.4.6;

• for each newly generated TXO Ring, txoRing, add (txoRing, ∅)
into Sutxor, where the empty SerialNumber set implies that

none of the TXOs in txoRing has been spent.

We now describe the validity rule of transfer transactions.

Rule 7: From the view of a miner, a transfer transaction, say TrTx =

(TrTxCon, abpf) with TrTxCon =
(
{txoRingi, sni}Ii=1, {txoj}Jj=1, fee

)
, is valid

with respect to a blockchain, say L, if and only if

• abpf is valid, which implies that (1) the owners of the consumed

coins (specified by {txoRingi, sni}Ii=1) have authorized and authen-

ticated this transaction, and (2) the total value of the consumed

26As this new block is being appended to the current blockchain, it is assumed to be valid with

respect to the current blockchain, and all transfer transactions in this new block are also valid,

namely, as shown later, there is a pair (txoRing, snSet) ∈ Sutxor such that txoRing = txoRingi

AND |snSet| < |txoRing| AND sni /∈ snSet, where | · | denotes the size of the set.
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coins equals to the total value of the generated coins and trans-

action fee.

• For any j1 6= j2 ∈ [1, J ], it holds that txoj1 .dpk 6= txoj2 .dpk, i.e., each

generated TXO has a different derived public key.

• For any i1 6= i2 ∈ [1, I], it holds that sni1 6= sni2, i.e., each consumed

TXO has a different serial number. Note that repeated serial

numbers imply double-spending.

• For each i ∈ [1, I], there is a pair (txoRing, snSet) ∈ Sutxor such that

txoRingi = txoRing and sni /∈ snSet, and if txoRingi is a coinbase-TXO-

ring, it should be mature. Note that txoRingi /∈ Sutxor implies that

txoRingi does not exist with respect to L or it has been removed be-

cause all its coins have been spent. By sni /∈ txoRing, it implies that

the corresponding coins has been spent by some existing transac-

tion in L.

In Abelian, for honestly generated transactions, the derived public key of each

TXO will be globally unique. Ideally, the miner should check this point to detect

maliciously generated TXOs. However, it will be very inefficient to check the global

uniqueness of derived public keys, especially when the blockchain becomes large.

From the view of a miner, it might only care that the transaction is well authorized

and authenticated and the balance holds, here the miner only checks whether the

derived public keys are unique inside individual transactions, and leave more checks

to the user, say the recipient of each TXO.

Hence, when a user detects that there is a new coin/TXO belonging to him, he

needs to check whether this new coin’s derived public key has been in his wallet.

If the derived public key is a repeated one, the user should refuse to acknowledge

the reception of the coin and then refuse to deliver goods/service to the payer. In

particular, if the two coins belong to the same ring, the recipient could spend at

94



most of them, and if the two coins belong to different rings, the recipient could

spend both of them, but his privacy will be weakened. As each user can easily

detect the coins which are intended to him but with repeated derived key and then

refuse to acknowledge the reception of the coin, no one will attempt to launch such

an attack. On the other side, if an attacker attempts to generate two TXOs with

the same derived public key but intended to two different users (i.e. master public

keys), the underlying cryptographic scheme will ensures that at most one of the

TXOs will be accepted as a valid payment by the target users.

Similarly, a miner checks whether repeated serial number appears in individual

transactions and in individual rings, guaranteeing that there is no double-spending.
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5 Tokenomics

The total supply of Abelian is 225.18 million ABELs (exact amount: 225,179,981

ABELs), or 251 − 1 Neutrinos (exact amount: 2,251,799,813,685,247 Neutrinos),

where Neutrino is the smallest cryptocurrency unit in Abelian and 1 ABEL = 107

Neutrinos.

For every 256 seconds (about 4.27 minutes), one block will be generated and

the mining difficulty will be reviewed and adjusted for every 4,000 blocks. In each

era, there will be 400,000 blocks generated. In other words, each era will last for

about 3.25 years. In the first era, the block reward is 256 ABELs. Halving will

happen after each era, namely, the number of ABELs to be rewarded per block

will be halved in the next era. In the final era, there will be 0.5 ABEL rewarded

per block.

At the Genesis Block, there will be 20.58 million ABELs pre-mined (exact

amount: 205,799,813,685,247 Neutrinos), and that count towards 9.14% of the to-

tal ABEL supply in Abelian. These ABELs will be exclusively used for supporting

the decentralization of the network, and for promoting as well as building up a

diversified and active Abelian community.

5.1 Token Release Schedule

• Era 1: 256 ABELs per block, (20.48+102.4) million ABELs will be mined

in the first 3.25 years (55%)

• Era 2: 128 ABELs per block, (20.48+153.6) million ABELs will be mined

in the first 6.5 years (77%)

• Era 3: 64 ABELs per block, (20.48+179.2) million ABELs will be mined in

the first 9.75 years (89%)

• Era 4: 32 ABELs per block, (20.48+192) million ABELs will be mined in

the first 13 years (94%)
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• Era 5: 16 ABELs per block

• Era 6: 8 ABELs per block

• Era 7: 4 ABELs per block

• Era 8: 2 ABELs per block

• Era 9: 1 ABEL per block

• Era 10: 0.5 ABEL per block (final era)

It will take 32.5 years to complete all the ABEL mining, and the total supply is

calculated as

20.58 million + (256 + 128 + . . . + 1 + 0.5)× 400,000

= 20.58 million + (210 − 1)× 200,000

= 225.18 million

Below is a time-related summary:

• One block is released for every 256 seconds on average.

• The mining difficulty is adjusted for every 11.8 days (approx).

• The block reward is halved for every 3.25 years (approx).

• All supply by mining will be released in 32.5 years.

• At the end of the first era, there will be 122,979,981.3685247 ABELs (in-

cluding all the pre-issued at the genesis block and mined in the first era)

available.
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5.2 Indicative Roadmap

Abelian is an open community project which aims at making all the cryptographic

algorithms peer reviewed academically and all the source code open for collabo-

rative development by the community and for the community. The future devel-

opment of Abelian will completely be steered by the community and we believe

this will be the most transparent and sustainable way to promote the adoption of

post-quantum cryptographic techniques into the Blockchain industry.

Below we outline some tentative areas that our community may consider to

develop in the near future. As can be considered as version 1.0, Abelian will

start with SHA-256 based cryptographic hash functions with the mining difficulty

being reviewed and adjusted for every 4,000 blocks, and set the block size to 8MB.

The block creation frequency will be 256 seconds and the initial block reward will

be 256 ABELs. The block generation and consensus mechanisms are similar to

that of Bitcoin. The theoretical throughput will be at 10 TPS (transactions per

second). After the full launch of Abelian version 1.0, we may consider upgrading

the security to Abelian version 2.0 by replacing the cryptographic hash functions

to SHA-512 based with a slight tradeoff on the throughput that it will be down to

8 TPS. Right after having a stabilized network achieved, we may consider doubling

the block size to 16MB for achieving 16 TPS theoretical throughput. We do strive

to make the upgrades from one version to the next gracefully, and can upgrade

individual nodes independently, despite some hard forking may be needed during

upgrades.

We consider this as just the beginning of the post-quantum Blockchain initia-

tive. On Abelian specifically, as of this writing, we are merely achieving the very

first step of our dream only. We continue devising provably secure and practi-

cal cryptographic methods for achieving privacy with accountability, and devoting

ourselves to achieve much higher efficiency, and even inter-operability with other

quantum-resistant Blockchain systems.

As the ultimate goal of Abelian is to build an open community, we continue
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inviting great researchers, developers, investors, all crypto stakeholders, who are

passionate about post-quantum security or privacy coins, to participate and con-

tribute, and we solicit all supporters’ help on building up the Abelian ecosystem

together.

In this open community, we welcome contributions in all form. To name a

few, we are hoping that talented teams will be able to help build the following

technologies for Abelian:

• build much faster payment or token transfer mechanisms;

• create side-chains or layer 2 post-quantum technologies to enable smart con-

tracts and improve scalability as well as decentralization;

• improve the consensus protocol efficiency and effectiveness including the in-

troduction of proof-of-stake related mechanisms;

• propose more efficient or secure cryptographic implementations for boosting

the full privacy with provable security or shortening signature and key sizes;

and many more.
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6 Conclusion

With the dream of creating a quantum-resistant cryptocurrency platform and safe-

guarding the anonymity merit of cryptocurrency as first envisioned in the semi-

nal paper of Bitcoin, we set the advancement of a cryptocurrency provisioning

quantum-resistant and full privacy with optional accountability as the mission of

Abelian. In this manuscript, we proposed our technical approaches, and also rigor-

ously defined the cryptographic primitives and their security models for capturing

practical attacking scenarios. We believe that these will lay out a strong foun-

dation for us to build up the Abelian Blockchain platform in a provably secure

fashion.

We defined three levels of privacy spanning from the level as of Bitcoin (i.e.

Basic Privacy) to the Full Privacy level with the coin flows over addresses remain

unlinkability and untraceability, and at the same, ensure that transaction amount

is hidden. We also defined the level of Full Privacy with Accountability for accom-

modating applications where regulatory bodies or organizations may require the

basic privacy level while keeping the full privacy level to all other participants.

We believe that setting up a strong development and application community

is utmost important towards the sustainability of quantum-resistant Blockchain

initiative. Based on the rigorous definitions and models we formulated, we welcome

contributions to further develop Abelian and even adopt technologies from Abelian

to their own applications. Abelian will always be open source, and the future of

Abelian will be steered by its community and supporters. We would like to give the

cryptocurrency market a new choice and a new platform, which empowers other

innovators to build their next disruptive technologies and businesses using the

Abelian quantum-resistant Blockchain platform and its forthcoming ecosystem.
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A Cryptographic Primitives

In this part, we give a brief review of cryptographic tools that Abelian Coin uses,

including Hash, Signature scheme, Linkable Ring Signature scheme, Commitment

scheme, Zero Knowledge Proof, etc.

A.1 Hash

A cryptographic hash function (with output length l) is a probabilistic polynomial-

time (PPT) algorithm H : {0, 1}∗ → {0, 1}l that is collusion resistant, i.e. no

efficient (i.e. PPT) adversary can find x, x′ ∈ {0, 1}∗ such that x 6= x′ and H(x) =

H(x′) except with negligible probability.

A.2 Digit Signature

Definition 7 (Signature) A (digital) Signature scheme consists of three PPT

algorithms (Gen, Sign,Vrfy) such that:

• Gen(1n) → (pk, sk). The key-generation algorithm Gen takes as input a

security parameter 1n and outputs a pair of keys (pk, sk). These are called

the public key and the private key, respectively.

• Sign(sk,M) → σ. The signing algorithm Sign takes as input a private key

sk and a message M from some message space (that may depend on pk). It

outputs a signature σ.

• Vrfy(pk,M, σ)→ 1/0. The deterministic verification algorithm Vrfy takes as

input a public key pk, a message M , and a signature σ. It outputs a bit b,

with b = 1 meaning valid and b = 0 meaning invalid.

Correctness. It is required that except with negligible probability over (pk, sk)

output by Gen(1n), it holds that Vrfy(pk,M, Sign(sk,M)) = 1 for every (legal)

message M .

115



Security. For a fixed public key pk generated by a signer S, a forgery is a

message M along with a valid signature σ, where M was not previously signed by

S. Security of a Signature scheme means that an adversary should be unable to

output a forgery even if it obtains signatures on many other messages of its choice.

Formally, the security of Signature scheme is defined by the following Def. 8.

Definition 8 Given a Signature scheme (Gen, Sign,Vrfy), and a PPT adversary

A, consider the following game:

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk and access to an oracle Sign(sk, ·).

3. Adversary A outputs a (message, signature) pair (M,σ). Let Q denote the

set of all queries that A asked its oracle. A succeeds if and only if (1)

Vrfy(pk,M, σ) = 1 and (2) M /∈ Q.

A Signature scheme (Gen, Sign,Vrfy) is existentially unforgeable under an

adaptive chosen-message attack, or just secure, for all PPT adversaries A,

the success probability of A in the above game is negligible.

Roughly speaking, a secure Signature scheme can ensure that (1) only the signer

(who has a private key) can generate a valid signature and (2) anyone (since the

corresponding public key is published) can verify if a signature with respect to a

message is valid. Thus, a Signature scheme can be used to authenticate a message. In

particular, when a sender S, the owner of a key pair (pk, sk), wants to authenticate

a message M , it computes a signature σ ← Sign(sk,M) and sends (M,σ). Upon

receipt of (M,σ), a receiver who knows the public key pk can verify the authenticity

of m by checking whether Vrfy(pk,M, σ) = 1. This establishes both that S sent

M , and also that M was not modified in transit. Note that this implies a very

useful feature of signature – ‘non-repudiation’, namely, if a (message, signature)

pair (M,σ) is verified to be valid by a public key pk, the owner of pk cannot deny

that he sent the message M .
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With these features, say authenticity and non-repudiation, Signature becomes

one of the foundations for cryptocurrency. In cryptocurrency, coins are “owned”

by some public key pk, and when the “real owner” of the coins wants to spend

the coins through a transaction, he needs to sign a message (i.e. the transaction)

using the corresponding secret key sk. When a transaction and the corresponding

signature are verified to be valid, it implies that the transaction is issued by the

input coins’ real owner and the owner will not be able to deny this transaction in

the future.

A.3 Ring Signature

Ring Signatures, introduce by by Rivest et al. [74], enable a user to sign a message

so that a ‘ring’ of possible signers (which the user is a member) is identified, without

revealing exactly which member of that ring actually generated the signature. For

ring signature, users may be unaware of each other at the time they generate

their public keys and rings may be formed completely “on-the-fly” and in an ad-

hoc manner, and users are given fine-grained control over the level of anonymity

associated with any particular signature (via selection of an appropriate ring).

The formal definitions below are due to Bender et al. [12, 13], which, to the

best of our knowledge, proposes the strongest security model.

Definition 9 (Ring Signature) A ring signature scheme is a triple of PPT algo-

rithms (Gen, Sign,Vrfy) that respectively, generate keys for a user, sign a message,

and verify the signature of a message. Formally:

• Gen(1λ) → (PK, SK). The algorithm takes as input a security parameter λ,

and outputs a public key PK and secret key SK.

• Sign(M,R, s, SK) → σ. The algorithm takes as input a message M , a ring

R = (PK1, . . . ,PKn), an index s ∈ {1, . . . , n}, and a secret key SK, and

outputs a signature σ on the message M with respect to the ring R. We
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assume the following: (1) (R[s], SK) is a valid key-pair output by Gen; (2)

|R| ≥ 2 (since a ring signature is not intended to serve as a standard signa-

ture scheme); and (3) each public key on the ring is distinct. Note that the

first condition simply models ring signature useage (where a signer “knows”

its index s in the ring).

• Vrfy(M,R, σ) → 1/0. The algorithm takes as input a message M , a ring of

public keys R, and a purported signature σ on the message M with respect

to the ring R, and outputs a single bit indicating validity or invalidity.

Correctness. For any λ, any {(PKi, SKi)}ni=1 output by Gen(1λ), and s ∈ {1, . . . , n},
and any message M , we have Vrfy(M,R, Sign(M,R, s, SKs)) = 1, where R =

(PK1, . . . ,PKn).

The security definitions for ring signature includes anonymity and unforgeabil-

ity. Below we review the security definitions in [12, 13], which give the models

from weak to strong, capturing the adversaries’ ability.

A.3.1 Anonymity of Ring Signature

Definition 10 (Basic anonymity) Given a ring signature scheme (Gen, Sign,Vrfy),

a polynomial n(·), and a PPT adversary A, consider the following game:

1. Key pairs {(PKi, SKi)}n(λ)i=1 are generated using Gen(1λ), and the set of public

keys S := {PKi}n(λ)i=1 is given to A.

2. A is given access to an oracle OSign(·, ·, ·) such that OSign(s,M,R) returns

Sign(M,R, s, SKs), where it is required that R ⊆ S and PKs ∈ R.

3. A outputs a message M , distinct indices i0, i1, and a ring R ⊆ S for which

PKi0 ,PKi1 ∈ R. A random bit b is chosen, and A is given the signature

σ ← Sign(M,R, ib, SKib).

4. A outputs a bit b′, and succeeds if b′ = b.
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(Gen, Sign,Vrfy) achieves basic anonymity if, for any PPT A and any polynomial

n(·), the success probability of A in the above game is negligibly close to 1/2.

Remark. The above definition of basic anonymity leaves open the possibility of the

following attack: (1) an adversary generates public keys in some arbitrary manner

(which may possibly depend on the public keys of the honest users), and then (2)

a legitimate signer generates a signature with respect to a ring containing some of

these adversarially-generated public keys.

Definition 11 (Anonymity w.r.t. adversary-chosen keys) Given a ring sig-

nature scheme (Gen, Sign,Vrfy), a polynomial n(·), and a PPT adversary A, con-

sider the following game:

1. Key pairs {(PKi, SKi)}n(λ)i=1 are generated using Gen(1λ), and the set of public

keys S := {PKi}n(λ)i=1 is given to A.

2. A is given access to an oracle OSign(·, ·, ·) such that OSign(s,M,R) returns

Sign(M,R, s, SKs), where it is required that PKs ∈ R ∩ S. (Note that, in

contrast to Definition 10, it no longer requires R ⊆ S).

3. A outputs a message M , distinct indices i0, i1, and a ring R for which

PKi0 ,PKi1 ∈ R ∩ S. (Again, it no longer requires R ⊆ S). A ran-

dom bit b is chosen, and A is given the signature σ ← Sign(M,R, ib, SKib).

4. A outputs a bit b′, and succeeds if b′ = b.

(Gen, Sign,Vrfy) achieves anonymity w.r.t. adversary-chosen keys if, for any PPT

A and any polynomial n(·), the success probability of A in the above game is

negligibly close to 1/2.

Remark. (1) Note that the above definition of anonymity w.r.t. adversary-chosen

keys is different from the basic anonymity in Definition 10 lies only in that it no

longer requires R ⊆ S. Thus, it can defend against the attack mentioned in above

remark. (2) On the other side, the above definition only guarantees anonymity of
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a particular signature as long as there are at least two honest users in the ring. In

some sense this is inherent, since if an honest signer U chooses a ring in which all

other public keys (i.e., except for the public key of U) were created by an adversary,

then that adversary “knows that U must be the signer (since the adversary did not

generate the signature itself). As this case is inherent, a weaker requirement one

might consider when the signer U is the only honest user in a ring is that the other

members of the ring should be unable to prove to a third party that U generated

the signature (this is called an attribution attack).

Definition 12 (Anonymity against attribution attack/full key exposure)

Given a ring signature scheme (Gen, Sign,Vrfy), a polynomial n(·), and a PPT ad-

versary A, consider the following game:

1. For i = 1 to n(λ), generate (PKi, SKi) ← Gen(1λ, ωi) for randomly chosen

ωi. The set of public keys S := {PKi}n(λ)i=1 is given to A. (Note that it

makes explict the random coins used to generate keys.)

2. A is given access to an oracle OSign(·, ·, ·) such that OSign(s,M,R) returns

Sign(M,R, s, SKs), where it is required that PKs ∈ R ∩ S.

3. A is given access to an oracle Corrupt(·) that, on input i, returns ωi.

4. A outputs a message M , distinct indices i0, i1, and a ring R for which

PKi0 ,PKi1 ∈ R ∩ S. A random bit b is chosen, and A is given the signature

σ ← Sign(M,R, ib, SKib).

5. A outputs a bit b′, and succeeds if b′ = b and |{i0, i1} ∩ C| ≤ 1, where C is

the set of queries to the corruption oracle.

(Gen, Sign,Vrfy) achieves anonymity against attribution attacks if, for any PPT A
and any polynomial n(·), the success probability of A in the above game is at most

1/2 + negl(λ). If we allow |{i0, i1} ∩C| = 2, then we say (Gen, Sign,Vrfy) achieves

anonymity against full key exposure.
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Remark. To the best of our knowledge, this is the strongest anonymity definition

for ring signature.

A.3.2 Unforgeability of Ring Signature

Definition 13 (Unforgeability against fixed-ring attacks) A ring signature

scheme (Gen, Sign,Vrfy) is unforgeable against fixed-ring attacks if for any PPT

adversary A and for any polynomial n(·), the probability that A succeeds in the

following game is neligible:

1. Key pairs {(PKi, SKi)}n(λ)i=1 are generated using Gen(1λ), and the set of public

keys R := {PKi}n(λ)i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·), where OSign(s,M) returns

Sign(M,R, s, SKs).

3. A outputs (M∗, σ∗) and succeeds if Vrfy(M∗,R, σ∗) = 1 and also A never

made a query of the form OSign(∗,M∗).

Remark. Note that not only is A restricted to making signing queries with respect

to the full ring R, but its forgery is required to verify with respect to R as well.

The following definition is stronger and more natural.

Definition 14 (Unforgeability against chosen-subring attacks) A ring sig-

nature scheme (Gen, Sign,Vrfy) is unforgeable against chosen-subring attacks if for

any PPT adversary A and for any polynomial n(·), the probability that A succeeds

in the following game is negligible:

1. Key pairs {(PKi, SKi)}n(λ)i=1 are generated using Gen(1λ), and the set of public

keys S := {PKi}n(λ)i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·, ·), where OSign(s,M,R)

returns Sign(M,R, s, SKs), where it is required that R ⊆ S and PKs ∈ R.
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3. A outputs (M∗, R∗, σ∗) and succeeds if R∗ ⊆ S, Vrfy(M∗,R, σ∗) = 1, and A
never queried (∗,M∗, R∗) to its signing oracle.

Remark. The above definition still leaves open the possibility of an attack whereby

honest users are “tricked” into generating signatures using rings containing adversarially-

generated public keys. The following definition takes this into account as well as,

for completeness, an adversary who adaptively corrupts honest participants and

obtains their secret keys.

Definition 15 (Unforgeability w.r.t. insider corruption)) A ring signature

scheme (Gen, Sign,Vrfy) is unforgeable w.r.t. insider corruption if for any PPT

adversary A and for any polynomial n(·), the probability that A succeeds in the

following game is neligible:

1. Key pairs {(PKi, SKi)}n(λ)i=1 are generated using Gen(1λ), and the set of public

keys S := {PKi}n(λ)i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·, ·), where OSign(s,M,R)

returns Sign(M,R, s, SKs), where it is required that PKs ∈ R ∩ S.

3. A is also given access to a corrupt oracle Corrupt(·), where Corrupt(i) outputs

SKi .

4. A outputs (M∗, R∗, σ∗) and succeeds if Vrfy(M∗,R, σ∗) = 1, A never queried

(∗,M∗, R∗), and R∗ ⊆ S \ C, where C is the set of corrupted users.

A.3.3 Related Work of Ring Signature

Rivest et al. [74] introduced the concept of Ring signatures, and Bender et al.

[12, 13] provided rigorous security definitions for ring signatures and generic con-

structions based on trapdoor permutations. Shacham and Waters [78] gave a ring

signature scheme which is proved to be anonymous against full key exposure and

unforgeable with respect to insider corruption in the standard model. The scheme
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in [78] is based on paring assumptions and use common reference strings which

require a trusted setup phase. On efficiency, the scheme in [78] is more efficient

than that of [12, 13], but the signature size is still linear in the number of ring

numbers. Chandran et al. [21] proposed a sub-linear size (linear in the square

root of the ring size) ring signature scheme in the common reference string model

(implying trusted setup is required) under pairing-based assumptions, which is

proved anonymous against full key exposure and unforgeable with respect to in-

sider corruption in the standard model. On signature size, it is worth mentioning

that Dodis et al. [30] suggested a scheme with constant signature size independent

of ring members, but it relies on random oracle and trusted setup.

Groth and Kohlweiss [41] proposed a ring signature scheme derived from a

Sigma-protocol they proposed. The ring signature scheme in [41] does not need

trusted setup and achieves logarithmic signature size, but its security is proved in

the random oracle model.

Libert et al. [50] proposed a ring signature scheme derived from lattice-based

accumulator protocol, and thus this scheme is post-quantum secure, while it still

relies on random oracle. The scheme achieves logarithmic signature size, and is

very efficient in the lattice-based cryptography, with PK size of 4.9MB, SK size

3.25KB, and signature size 61.5MB.

As Ring Signature can hide the identity of the signer in a set of possible sign-

ers, a variant of ring signature, called Traceable Ring Signature [36], was used by

CryptoNote [84] to have the payer’s public key of a transaction hidden in a group

of public keys all of which contain the same amount of coins, so that no one can

tell which user actually sent the coins.

A.4 Linkable Ring Signature

While Ring Signature provides strong anonymity and is applicable to the scenarios

of leaking a secret safely, Liu et al. [55] extended the concept to Linkable Ring

Signature, where an additional property – linkability is added. Linkable Ring
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Signature is proposed for the scenarios of e-vote, where each signer is expected to

sign only once, but it is obvious that Linkable Ring Signature is also a potential

tool for achieving user privacy in cryptocurrency, as it simultaneously (1) has the

functionalities of Signature, (2) can hide the signer’s public key in a set of possible

public keys, and (4) can prevent double-spending as signing twice for the same

public key (i.e. spending the same coins twice) will be detected. Actually, while

the initial Monero and the original CryptoNote [84] protocol are derived from the

Traceable Ring signatures of [36], the recently improved Monero protocol, Ring

Confidential Transactions (RingCT) [67, 68], which attempts to hide the identities

of the payer/payee and the transaction amount, is derived from the Linkable Ring

Signature constructions by Liu et al.[55].

The Linkable Ring Signature definitions below is extended from that of Au et

al. [5].

Definition 16 A Linkable Ring Signature scheme is a tuple (KeyGen, Sign,Vrfy,

Link) of four poly-time algorithms:

• KeyGen(1λ) → (pki, ski). The algorithm takes as input a security parameter

λ and outputs a public/secret key pair (pki, ski). When we say that a public

key corresponds to a secret key or vice versa, we mean that the secret/public

key pair is an output of KeyGen.

• Sign(M,R, sk) → σ. The algorithm takes as input a message M , a ring

R = (pk1, . . . , pkn), and a secret key sk whose corresponding public key is

contained in R, and outputs a signature σ on the message M with respect to

the ring R.

• Vrfy(M,R, σ) → 1/0. The algorithm takes as input a message M , a ring of

public keys R, and a purported signature σ on the message M with respect

to the ring R, and outputs a single bit indicating validity or invalidity.
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• Link(M0, R0, σ0,M1, R1, σ1) → 1/0. The algorithm takes as input two valid

signatures (M0, R0, σ0), (M1, R1, σ1), and outputs a single bit indicating linked

or unlinked.

Correctness. Linkable Ring Signature schemes must satisfy:

1. Verification Correctness. Signatures signed according to specification are

accepted during verification, with overwhelming probability; and

2. Linking Correctness. Two signatures signed according to specification are

linked with overwhelming probability if the two signatures share a common

signer. On the other hand, two signatures signed according to specification

are unlinked with overwhelming probability if the two signatures do not share

a common signer.

Security. The security definitions for Linkable Ring Signature includes linkable-

anonymity, unforgeability, linkability, and non-slanderability. Below we review the

security definitions.

A.4.1 Link-anonymity of Linkable Ring Signature

Definition 17 (link-anonymity w.r.t. insider corruption) A Linkable Ring

Signature scheme is linkable-anonymous w.r.t. insider corruption if for any PPT

adversary A and for any polynomial n(·), the probability that A succeeds in the

following game is negligibly close to 1/2:

1. Setup. Key pairs {(pki, ski)}n(λ)i=1 are generated using KeyGen(1λ), and the

set of public keys S := {pki}n(λ)i=1 is given to A.

2. Probing Phase 1. A is given access to an oracle OSign(·, ·, ·) such that

OSign(s,M,R) returns Sign(M,R, sks), where it is required that R ⊆ S

and pks ∈ R ∩ S. A is also given access to a corruption oracle CO(·) where

CO(·) outputs ski and it is required that 1 ≤ i ≤ n(λ).

125



3. Challenge Phase. A outputs a message M , distinct indices i0, i1, and

a ring R ⊆ S for which pki0 , pki1 ∈ R ∩ S. It is required that none of

OSign(i0, ·, ·), OSign(i1, ·, ·), CO(i0), CO(i1) is queried. A random bit b

is chosen, and A is given the signature σ ← Sign(M,R, skib).

4. Probing Phase 2. Same as the Probing Phase 1, but with the restriction

that none of OSign(i0, ·, ·), OSign(i1, ·, ·), CO(i0), CO(i1) is queried.

5. Output Phase. A outputs a bit b′, and succeeds if b′ = b.

Note that for R ⊆ S, the underlined parts pks ∈ R ∩ S and pki0 , pki1 ∈ R ∩ S
are actually pks ∈ R and pki0 , pki1 ∈ R, respectively. This writing is for the link-

anonymity w.r.t. adversarially-chosen keys definition below.

Definition 18 (link-anonymity w.r.t. adversarially-chosen keys) A Link-

able Ring Signature scheme is link-anonymous w.r.t. adversarially-chosen keys if

for any PPT adversary A and for any polynomial n(·), the probability that A suc-

ceeds in the above game, without the requirement of R ⊆ S for OSign(·, ·, R) in

Probing Phase 1 and 2 and without restricting R ⊆ S in Challenge Phase,

is negligibly close to 1/2.

Remark: Note that link-anonymity w.r.t. adversarially-chosen keys is stronger

than link-anonymity w.r.t. insider corruption, and a link-anonymous w.r.t. adversarially-

chosen keys Linkable Ring Signature is more desirable in practice, as it is obvious

that an attacker in practice can easily launch chosen-keys attacks.

A.4.2 Unforgeability of Linkable Ring Signature

Definition 19 (Unforgeability w.r.t insider corruption) A Linkable Ring Sig-

nature scheme is unforgeable w.r.t. insider corruption if for any PPT adversary A
and for any polynomial n(·), the probability that A succeeds in the following game

is negligible.
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1. Setup. Key pairs {(pki, ski)}n(λ)i=1 are generated using KeyGen(1λ), and the

set of public keys S := {pki}n(λ)i=1 is given to A.

2. Probing Phase. A is given access to an oracle OSign(·, ·, ·) such that

OSign(s,M,R) returns Sign(M,R, sks), where it is required that R ⊆ S

and pks ∈ R ∩ S. A is also given access to a corruption oracle CO(·) where

CO(·) outputs ski and it is required that 1 ≤ i ≤ n(λ).

3. Output Phase. A outputs (M∗, R∗, σ∗) and succeeds if Vrfy(M∗,R∗, σ∗) = 1,

A never queried (∗,M∗, R∗) to its signing oracle, and R∗ ⊆ S \ C, where C

is the set of corrupted users.

Note that for R ⊆ S, the underlined part pks ∈ R ∩ S is actually pks ∈ R. This

writing is for the unforgeability w.r.t. adversarially-chosen keys definition below.

Definition 20 (Unforgeability w.r.t adversarially-chosen keys) A Linkable

Ring Signature scheme is unforgeable w.r.t. adversarially-chosen keys if for any

PPT adversary A and for any polynomial n(·), the probability that A succeeds in

the above game, without the requirement of R ⊆ S for OSign(·, ·, R) in Probing

Phase , is negligible.

Remark: Note that unforgeability w.r.t. adversarially-chosen keys is stronger than

unforgeability w.r.t. insider corruption, and a unforgeable w.r.t. adversarially-

chosen keys Linkable Ring Signature is more desirable in practice, as it is obvious

that an attacker in practice can easily launch chosen-keys attacks.

A.4.3 Linkability of Linkable Ring Signature

Definition 21 (Linkability w.r.t. insider corruption) A Linkable Ring Sig-

nature scheme is linkable w.r.t. insider corruption if for any PPT adversary A
and for any polynomial n(·), the probability that A succeeds in the following game

is negligible.
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1. Setup. Key pairs {(pki, ski)}n(λ)i=1 are generated using KeyGen(1λ), and the

set of public keys S := {pki}n(λ)i=1 is given to A.

2. Probing Phase. A is given access to an oracle OSign(·, ·, ·) such that

OSign(s,M,R) returns Sign(M,R, sks), where it is required that R ⊆ S

and pks ∈ R ∩ S. A is also given access to a corruption oracle CO(·) where

CO(·) outputs SKi and it is required that 1 ≤ i ≤ n(λ).

3. Output Phase. A outputs (M∗
i , R

∗
i , σ

∗
i ) (i = 1, 2), and succeeds if it holds

that Vrfy(M∗i ,R
∗
i , σ

∗
i ) = 1, R∗i ⊆ S for i = 1, 2, Link(σ∗1, σ

∗
2) = 0, and

|(R∗1 ∪R∗2) ∩ C|+ |(R∗1 ∪R∗2) \ S| ≤ 1, where C is the set of corrupted users.

Note that: (1) in Probing Phase, for R ⊆ S, the underlined part pks ∈ R ∩ S is

actually pks ∈ R; and (2) in Output Phase, for R∗i ⊆ S (i = 1, 2), the underlined

part |(R∗1 ∪R∗2) ∩ C|+ |(R∗1 ∪R∗2) \ S| ≤ 1 is actually |(R∗1 ∪R∗2) ∩ C| ≤ 1. This

writing is for the linkability w.r.t. adversarially-chosen keys definition below.

Definition 22 (Linkability w.r.t. adversarially-chosen keys) A linkable ring

signature scheme is linkable w.r.t. adversarially-chosen keys if for any PPT ad-

versary A and for any polynomial n(·), the probability that A succeeds in the above

game, without requiring R ⊆ S for OSign(·, ·, ·) in Probing Phase and without

restricting R∗i ⊆ S in Output Phase , is negligible.

Remark: Note that linkability w.r.t. adversarially-chosen keys is stronger than

linkability w.r.t. insider corruption, and a linkable w.r.t. adversarially-chosen

keys Linkable Ring Signature is more desirable in practice, as it is obvious that an

attacker in practice can easily launch chosen-keys attacks.

A.4.4 Non-slanderability of Linkable Ring Signature

Definition 23 (Non-slanderability w.r.t. insider corruption) A Linkable Ring

Signature scheme is non-slanderable w.r.t. insider corruption if for any PPT ad-
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versary A and for any polynomial n(·), the probability that A succeeds in the

following game is negligible.

1. Setup. Key pairs {(pki, ski)}n(λ)i=1 are generated using KeyGen(1λ), and the

set of public keys S := {pki}n(λ)i=1 is given to A.

2. Probing Phase. A is given access to an oracle OSign(·, ·, ·) such that

OSign(s,M,R) returns Sign(M,R, sks), where it is required that R ⊆ S

and pks ∈ R ∩ S. A is also given access to a corruption oracle CO(·) where

CO(·) outputs ski and it is required that 1 ≤ i ≤ n(λ).

3. Output Phase. A outputs (σ̂,M∗, R∗, σ∗), and succeeds if it holds that σ̂ is

the output of OSign(ŝ, M̂ , R̂) for some R̂ ⊆ S and ŝ such that pkŝ ∈ R̂ ∩ S,

R∗ ⊆ S , Vrfy(M∗,R∗, σ∗) = 1, Link(σ̂, σ∗) = 1, and A never queries ŝ to

CO(·).

Note that: (1) in Probing Phase, for R ⊆ S, the underlined part pks ∈ R ∩ S
is actually pks ∈ R; and (2) in Output Phase, for R̂ ⊆ S, the underlined part

pkŝ ∈ R̂ ∩ S is actually pkŝ ∈ R̂. This writing is for the non-slanderability w.r.t.

adversarially-chosen keys definition below.

Definition 24 (Non-slanderability w.r.t. adversarially-chosen keys) A Link-

able Ring Signature scheme is non-slanderable w.r.t. adversarially-chosen keys if

for any PPT adversary A and for any polynomial n(·), the probability that A suc-

ceeds in the above game, without requiring R ⊆ S for OSign(·, ·, ·) in Probing Phase

and without restricting R̂ ⊆ S,R∗i ⊆ S in Output Phase , is negligible.

Remark: Note that non-slanderability w.r.t. adversarially-chosen keys is stronger

than non-slanderability w.r.t. insider corruption, and a non-slanderable w.r.t.

adversarially-chosen keys Linkable Ring Signature is more desirable in practice,

as it is obvious that an attacker in practice can easily launch chosen-keys attacks.
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A.4.5 Related Work of Linkable Ring Signature

Linkable Ring Signature was first introduced by Liu et al. [55]. Then, Liu and

Wong [56] enhanced the security model, and Tsang and Wei [83] enhanced the

security and proposed a short linkable ring signature scheme whose signature size

is independent of the number of ring members. Noted that [55, 56, 83] did not

consider the insider attack, Au et al. [5] refined the security definitions which

we review above. In particular, [55] did not consider linkable anonymity against

insider corruption, [56] and [83] are linkable anonymous against insider corruption,

and [5] is linkable anonymous w.r.t. adversarially-chosen keys; [55] and [56] are

unforgeable against chosen-subring attack, [83] is unforgeable w.r.t. insider cor-

ruption, and [5] is unforgeable w.r.t. adversarially-chosen keys; [55] and [56] are

linkable against chosen-subring attack, [83] is linkable w.r.t. insider corruption,

and [5] is linkable w.r.t. adversarially-chosen keys; [55] and [56] can be proven

non-slanderable w.r.t. adversarially-chosen keys 27, [83] is non-slanderable w.r.t.

insider corruptions, and [5] is non-slanderable w.r.t. adversarially-chosen keys. All

the schemes in [55, 56, 83, 5] rely on random oracle model. The signature size in

[55, 56] is linear in the ring size, while the signature size in [83, 5] is independent of

the ring size. However, while the security of the schemes in [55, 56] is based on on

generally accepted DDH problem and Discrete Logarithm problem, the security

of [83, 5] is based on a very strong new assumption such that, given two distinct

RSA moduli n1 = p1q1 and n2 = p2q2, adversary cannot distinguish gp1+q1 from

gp2+q2 , where g is in QR(N) for RSA modules N . This implies that [83, 5] require

a trusted setup phase. In summary, the security of [55, 56, 83] are weak due to

their weak security model, while [5] has a stronger security model 28, but [5] relies

on a very strong new assumption and requires a trusted setup phase.

Another related concept that is worth mentioning is Traceable Ring Signature

27None of the models in [55, 56, 83] considers non-slanderable w.r.t. adversarially-chosen keys
28Note that the security model may be further enhanced to support unforgeability against

adversarially-chosen key attacks
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[36], which was proposed by Fujisaki and SuzuKi. Traceable Ring Signature is

similar to Linkable Ring Signature, but with the functionality that, if a signer

signs two different messages on the same ring, the identity will be revealed. While

the traceable signature scheme in [36] has signature size linear in the ring size and

relies on random oracle model, Fujisaki [35] proposed a traceable ring signature

which has sub-linear signature size (linear in the square root of the ring size) and

is secure in the standard model.

While the latest Monero bases its protocol on the Linkable Ring Signature

scheme by Liu et al. [55], the scheme does not consider insider attacks. In-

stead, they only considered the chosen-subring attack. More specifically, the link-

anonymity, unforgeability, linkability, and non-slanderability definitions with re-

spect to chosen-subring are similar to that of insider corruption, except that the

adversaries are not given access to the corruption oracle CO(·). In other words,

link-anonymity, unforgeability, linkability, and non-slanderability definitions with

respect to chosen-subring is much weaker than that of insider corruption and that

of adversarially-chosen keys. In the setting of cryptocurrencies, any (potentially

malicious) user could launch adversarially-chosen keys attacks, once his public

key(s) are included in some ring. Abelian Coin protocols will be based on the Link-

able Ring Signature schemes resisting adversarially-chosen keys attacks, which are

more secure and more practical in the setting of cryptocurrencies.

Liu et al. [55]’s scheme is the initial linkable ring signature, which was analyzed

only in weak security models, and that the derived protocols may inherit the

weakness.

A.5 Commitment

While Ring Signature can help hide the identities of the payers and payees of

transaction, Commitment is a very useful cryptographic tool which can help hide

the transaction amounts.

In cryptography, a Commitment scheme allows a committer to commit to a
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certain value while keeping it hidden from the public (confidentiality) and without

being able to change its mind later on (bindingness). Below is a brief view of

non-interactive Commitment definitions [29].

Definition 25 (Commitment Scheme) A (non-interactive) Commitment Scheme

(for a message space M) is a tuple (Setup,Commit,Open) of three poly-time algo-

rithms:

1. Setup(1k)→ CK generates the public commitment key CK.

2. for any m ∈ M, (c, d) ← CommitCK(m) is the (commitment, opening) pair

for m. c = c(m) serves as the commitment value, and d = d(m) as the

opening value. We often omit mentioning the public commitment key CK

when it is clear from the context.

3. OpenCK(c, d)→ m̃ ∈M∪⊥, where ⊥ is returned if c is not a valid commit-

ment to any message. We often omit mentioning the public commitment key

CK when it is clear from the context.

Correctness. Commitment Scheme must satisfy : for any m ∈M,

OpenCK(CommitCK(m)) = m.

Here is how a Commitment Scheme is used. When a committer C wants to

commit a value m to a receiver R (using the commitment key CK which we don’t

explicitly mention below), a two-phase protocol is run as below.

• Commit Phase. The committer C runs (c, d) ← Commit(m), and sends c

to the receiver R.

• Reveal Phase. The committer C sends d and m to the receiver R. Then R
runs m̃← Open(c, d). R accepts if m̃ 6= ⊥ and m̃ = m, otherwise R rejects.

By correctness, if both parties are honest, R accepts.
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Security. A Commitment Scheme should have the security properties: (1) the

commitment c gives the receiver no information about the value m, and (2) the

opening d cannot open c in two different ways (i.e. with a value different from the

committed value). The properties are called hiding and binding.

1. Hiding. It is computationally hard for any adversaryA to generate two mes-

sages m0,m1 ∈ M such that A can distinguish between their commitment

c0, c1.

2. Binding. It is computationally hard for any adversary A to come up with a

triple (c, d, d′), referred to as a collision, such that (c, d) and (c, d′) are valid

commitments for m and m′ with m 6= m′ .

Due to the properties of hiding, binding and non-interactivity, (non-interactive)

Commitment Schemes have been used by Monero, ZeroCoin, and ZeroCash, to

achieve transaction amounts hiding.

For a transaction in cryptocurrency, it is required that the total number

of output coins is equal to that of the input coins. When the transaction

amounts are hidden using Commitment Schemes, to check this condition, we need

the Commitment Schemes to be additively Homomorphic.

Additively Homomorphic Commitment Scheme. Let the message space is

M = Zp = {0, 1, . . . , p−1} for some p, a Commitment Scheme is Additively Homo-

morphic, if it holds that: for any message m1,m2 ∈ Zp, let (c1, d1)← Commit(m1),

(c2, d2)← Commit(m2), Open(c1⊗c2, d1�d2) = m1+m2 holds, where ⊗ and � are

binary operations defined over the commitments and openings respectively, and +

is module addition over Zp.

A.6 Zero-Knowledge Proof

In a cryptocurrency, when the transaction amounts are hidden, we need a crypto-

graphic range proof to show that the amount in a legal range. At the same time,
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the proof should leak no information about the amount value, as we are trying to

hide the amount. This requires the rang proof is a zero-knowledge proof.

Roughly speaking, zero-knowledge proof is a cryptographic tool, which is a way

for somebody to prove a (mathematical) statement without revealing any other

information that leads to that statement being true. For example, a prover may

want to prove a statement such as “I know x such that H(x) belongs to the set

{. . . }”. He could do this by revealing x. But a zero-knowledge proof allows him

to do this in such a way that the other person (verifier) is no wiser about the value

of x after seeing the proof than they were before.

Below we briefly review the formal definitions for zero-knowledge proof.

Definition 26 (Non-interactive Zero-Knowledge, NIZK [33]) Π = (l, P, V,

S = (S1, S2)) is a single-theorem NIZK proof system for the language L ∈ NP

with witness relation R, if l is a polynomial, and P, V, S1, S2 are all probabilistic

polynomial-time machines such that there exists a negligible function α such that

for all k:

• Completeness: For all x ∈ L of length k and all w such that R(x,w) =

True, for all strings σ of length l(k), we have that V (x, P (x,w, σ), σ) = True.

• Soundness: For all unbounded (resp. polynomial-time) adversaries A, if

σ ∈ {0, 1}l(k) is chosen randomly, then the probability that A(σ) will output

(x, p) such that x /∈ L but V (x, p, σ) = True is less than α(k).

• Single-Theorem Zero Knowledge: For all non-uniform PPT adversaries

A = (A1,A2), we have that

|Pr[ExptA(k) = 1]− Pr[ExptSA(k)]| ≤ α(k),

where the experiments ExptA(k) and ExptSA(k) are defined as follows:
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ExptA(k) :∑
← {0, 1}l(k)

(x,w, s)← A1(
∑

)

p← P (x,w,
∑

)

return A2(p, s)

ExptSA(k) :

(
∑

, τ)← S1(1
k)

(x,w, s)← A1(
∑

)

p← S2(x,
∑

, τ)

return A2(p, s)

To define a notion of NIZK where any polynomial number of proofs can be

simulated, we change the Zero-knowledge condition as follows:

Definition 27 (unbounded NIZK [33]) Π = (l, P, V, S = (S1, S2)) is an un-

bounded NIZK proof system for the language L ∈ NP , if Π is single-theorem

NIZK proof system for L and furthermore: there exists a negligible function α

such that for all k:

(Unbounded Zero Knowledge): For all non-uniform PPT adversaries A, we

have that |Pr[Expt(k) = 1] − Pr[ExptSA(k) = 1]| ≤ α(k), where the experiments

ExptA(k) and ExptSA(k) are as defined as follows:

ExptA(k) :∑
← {0, 1}l(k)

return AP (·,·,
∑

)(
∑

)

ExptSA(k) :

(
∑

, τ)← S1(1
k)

return AS′(·,·,
∑
,τ)(
∑

)

where S ′(x,w,
∑
, τ)

def
= S2(x,

∑
, τ).

A.7 zk-SNARK

For a field F, an F-arithmetic circuit takes elements in F as inputs, and its gates

output elements in F. In particular, the circuit has an input x ∈ Fn and an

auxiliary input a ∈ Fh which is called a witness. A gate with inputs y1, · · · , ym ∈ F
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is bilinear if its output is (~a·(1, y1, · · · , ym))(~b·(1, y1, · · · , ym)) for some ~a,~b ∈ Fm+1.

Here we consider the circuits that only have bilinear gates.

An arithmetic circuit satisfiability problem of an F-arithmetic circuit C : Fn ×
Fh → Fl is captured by the relation RC = {(x, a) ∈ Fn × Fh : C(x, a) = 0l}, and

its language is LC = {x ∈ Fn : ∃a ∈ Fh s.t. C(x, a) = 0l}.
Given a field F, a publicly-verifiable preprocessing zk-SNARK 29 for F-arithmetic

circuit satisfiability is a triple of polynomial-time algorithms (KeyGen,Prove,Verify):

• KeyGen(1λ, C)→ (pk, vk). On input security parameter λ and an F-arithmetic

circuit C, the key generator KeyGen probabilistically samples a proving key

pk and a verification key vk. Both keys are published as public parameters

and can be used any number of times to prove/verify memberships in LC .

• Prove(pk, x, a) → π. On input a proving key pk and any (x, a) ∈ RC , the

prover Prove outputs a non-interactive proof π for the statement x ∈ LC .

• Verify(vk, x, π)→ b. On input a verification key vk, an input x, and a proof

π, the verifier Verify outputs b = 1 if he is convinced that x ∈ LC .

A zk-SNARK satisfies the following properties:

• Completeness. For every security parameter λ, F-arithmetic circuit C,

and any (x, a) ∈ RC , the honest prover can convince the verifier. Namely,

b = 1 with probability 1 − negl(λ) in the following experiment: (pk, vk) ←
KeyGen(1λ, C); π ← Prove(pk, x, a); b ← Verify(vk, x, π). Informally, com-

pleteness ensures that a zk-SNARK functions correctly.

29SNARGs represents ‘succinct non-interactive arguments’. If a SNARG satisfies a certain

natural proof-of-knowledge property, it is called a SNARG of knowledge (SNARK). If it also

satisfies a certain natural zero-knowledge property, it is called a zero-knowledge SNARK (zk-

SNARK). The ‘processing’ implies the proofs are in the preprocessing model which relies on an

expensive but reusable key generation.
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• Succinctness. An honestly-generated proof π hasOλ(1) bits and Verify(vk, x, π)

runs in time Oλ(|x|). Informally, a zk-SNARK generates short proofs effi-

ciently.

• Proof of knowledge (soundness). For every poly(λ)-size adversary A,

there is a poly(λ)-size extractor E such that Verify(vk, x, π) = 1 and (x, a) /∈
RC with probability negl(λ) in the following experiment: (pk, vk)← KeyGen(1λ,

C); (x, π) ← A(pk, vk); a ← E(pk, vk). Informally, if the verifier accepts a

proof output by a bounded prover, then the prover “knows” a witness for

the given instance.

• Perfect zero knowledge. An honestly-generated proof is perfect zero-

knowledge. Namely, there is a polynomial-time simulator Sim such that for

all stateful distinguishers D the following two probabilities are equal:

Pr

 (x, a) ∈ RC

D(π) = 1

∣∣∣∣∣∣
(pk, vk)← KeyGen(C)

(x, a)← D(pk, vk)

π ← Prove(pk, x, a)


and

Pr

 (x, a) ∈ RC

D(π) = 1

∣∣∣∣∣∣
(pk, vk, trap)← Sim(C)

(x, a)← D(pk, vk)

π ← Sim(pk, x, trap)


Informally, the proof π reveals no information about witness a.

A.7.1 Related Work of zk-SNARK

The study of zk-SNARK originates from the proof of the PCP theorem [6, 32, 4, 3],

which states that NP statements have Probabilistically Checkable Proofs (PCPs)

that can be verified in time polylogarithmic in the size of a classic proof. Based

on collision-resistant hashes (CRHs) and PCPs, Kilian [45] showed a four-message

interactive argument for NP which is succinct. A challenge which is of both the-

oretical and practical interest is the construction of non-interactive succinct argu-
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ments. As a first step in this direction, Micali [64] provided a one-message succinct

non-interactive argument for NP in the random oracle model. Gentry and Wichs

[39] gave a formal definition of succinct non-interactive arguments (SNARG), and

showed that SNARG can be proven secure only via non-standard assumptions.

Extending the above works, Bitansky et al. [14] improved Micali’s construction

by removing the random oracles, and replaced them with Extractable Collision-

Resistant Hash functions (ECRHs), and obtained SNARGs of knowledge (SNARKs).

Then, Bitansky et al. [15] proposed a weaker version of SNARK, called preprocess-

ing SNARK, where the verifier is allowed to conduct an expensive offline phase

that is independent of the statement to be proven later. In [15], Bitansky et al.

gave a general technique for constructing zk-SNARKs. First, they define a lin-

ear PCP where the honest proof oracle is a linear function (over an underlying

field) and soundness is required to hold only for linear proof oracles. Then, they

show a transformation (also based on knowledge-of-exponent assumptions) from

any linear PCP with a low-degree verifier to a SNARK; also, if the linear PCP is

honest-verifier zero-knowledge (HVZK), the resulting SNARK is zero knowledge.

Gennaro et al. [37] introduced a new characterization of the NP complexity

class, called Quadratic Span Programs (QSPs), which is a natural extension of

span programs defined by Karchmer and Wigderson [42]. Using QSP and its

adaption Quadratic Arithmetic Programs (QAPs), Gennaro et al. [37] constructed

succinct arguments of NP-statements that are quick to construct and verify. QSPs

and QAPs are expressive enough to allow for much simpler and more efficient

cryptographic checking. In particular, they invested significant effort in obtaining

an efficient reduction from circuit satisfiability to QSPs and QAPs.

Recent studies on SNARKs mostly based their work on that of Bitansky et

al. [15] and Gennaro et al. [37]. Two [10, 70] of these work provided implementa-

tions. In particular,

• Parno et al. [70] presented two main contributions:
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– A zk-SNARK with essentially optimal asymptotics, for arithmetic cir-

cuit satisfiability. The construction is based on the QAPs [37], and an

implementation for the construction is given.

– A compiler that maps C programs with fixed memory accesses and

bounded control flow (e.g. array accesses and loop iteration bounds are

compile-time constants) into corresponding arithmetic circuits.

• Ben-Sasson et al. [10] presented three main contributions:

– A zk-SNARK with essentially optimal asymptotics for arithmetic circuit

satisfiability, and with a corresponding implementation. The construc-

tion is also based on QAPs, but follows the linear interactive proof

approach of [15].

– A simple RISC architecture, TinyRAM, along with a circuit generator for

generating arithmetic circuits that verify correct execution of TinyRAM

programs.

– A compiler that, given a C program, produces a corresponding TinyRAM

program.

Then, Ben-Sasson et al. [11] combined the works of [10] and [70] and made

further optimizations. The main contributions include

• A new circuit generator that incorporates the following three main improve-

ments.

– The circuit generator supports programs on a new, more expressive

architecture: vnTinyRAM. This new architecture follows the von Neu-

mann paradigm: program and data are stored in the same read-write

address space. vnTinyRAM can thus efficiently support many program-

ming styles, including the C compiler of [10].

139



– The circuit generator is universal: when given input bounds `, n, T , it

produces a circuit that can verify the execution of any program with

≤ ` instructions, on any input of size ≤ n, for ≤ T steps. In contrast,

prior circuits generators hardcodes the program in the circuit.

– The circuit generator efficiently handles large programs.

• A high-performance implementation of a zk-SNARK for arithmetic circuit

satisfiability. This implementaion is an improvement upon the protocol of

Parno et al. [70].

This is used in the construction of Zerocash [76]. Remark that the construction is

based on pairing, and is not post-quantum secure.
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